Tobias Dornheim, Sebastian Schwalbe, Panagiotis Tolias, Maximilian P. Böhme, Zhandos A. Moldabekov, Jan Vorberger
{"title":"Ab initio density response and local field factor of warm dense hydrogen","authors":"Tobias Dornheim, Sebastian Schwalbe, Panagiotis Tolias, Maximilian P. Böhme, Zhandos A. Moldabekov, Jan Vorberger","doi":"10.1063/5.0211407","DOIUrl":null,"url":null,"abstract":"We present quasi-exact ab initio path integral Monte Carlo (PIMC) results for the partial static density responses and local field factors of hydrogen in the warm dense matter regime, from solid density conditions to the strongly compressed case. The full dynamic treatment of electrons and protons on the same footing allows us to rigorously quantify both electronic and ionic exchange–correlation effects in the system, and to compare the results with those of earlier incomplete models such as the archetypal uniform electron gas or electrons in a fixed ion snapshot potential that do not take into account the interplay between the two constituents. The full electronic density response is highly sensitive to electronic localization around the ions, and our results constitute unambiguous predictions for upcoming X-ray Thomson scattering experiments with hydrogen jets and fusion plasmas. All PIMC results are made freely available and can be used directly for a gamut of applications, including inertial confinement fusion calculations and the modeling of dense astrophysical objects. Moreover, they constitute invaluable benchmark data for approximate but computationally less demanding approaches such as density functional theory or PIMC within the fixed-node approximation.","PeriodicalId":54221,"journal":{"name":"Matter and Radiation at Extremes","volume":"94 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter and Radiation at Extremes","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0211407","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We present quasi-exact ab initio path integral Monte Carlo (PIMC) results for the partial static density responses and local field factors of hydrogen in the warm dense matter regime, from solid density conditions to the strongly compressed case. The full dynamic treatment of electrons and protons on the same footing allows us to rigorously quantify both electronic and ionic exchange–correlation effects in the system, and to compare the results with those of earlier incomplete models such as the archetypal uniform electron gas or electrons in a fixed ion snapshot potential that do not take into account the interplay between the two constituents. The full electronic density response is highly sensitive to electronic localization around the ions, and our results constitute unambiguous predictions for upcoming X-ray Thomson scattering experiments with hydrogen jets and fusion plasmas. All PIMC results are made freely available and can be used directly for a gamut of applications, including inertial confinement fusion calculations and the modeling of dense astrophysical objects. Moreover, they constitute invaluable benchmark data for approximate but computationally less demanding approaches such as density functional theory or PIMC within the fixed-node approximation.
期刊介绍:
Matter and Radiation at Extremes (MRE), is committed to the publication of original and impactful research and review papers that address extreme states of matter and radiation, and the associated science and technology that are employed to produce and diagnose these conditions in the laboratory. Drivers, targets and diagnostics are included along with related numerical simulation and computational methods. It aims to provide a peer-reviewed platform for the international physics community and promote worldwide dissemination of the latest and impactful research in related fields.