Hao Liu, Suleman Ayub Khan, Muhammad Nasir Amin, Fadi Althoey, Muhammad Tahir Qadir
{"title":"Evaluating the strength loss and the effectiveness of glass and eggshell powder for cement mortar under acidic conditions","authors":"Hao Liu, Suleman Ayub Khan, Muhammad Nasir Amin, Fadi Althoey, Muhammad Tahir Qadir","doi":"10.1515/rams-2024-0042","DOIUrl":null,"url":null,"abstract":"The cementitious composite’s resistance to the introduction of harmful ions is the primary criterion that is used to evaluate its durability. The efficacy of glass and eggshell powder in cement mortar exposed to 5% sulfuric acid solutions was investigated in this study using artificial intelligence (AI)-aided approaches. Prediction models based on AI were built using experimental datasets with multi-expression programming (MEP) and gene expression programming (GEP) to forecast the percentage decrease in compressive strength (CS) after acid exposure. Furthermore, SHapley Additive exPlanations (SHAP) analysis was used to examine the significance of prospective constituents. The results of the experiments substantiated these models. High coefficient of determination (<jats:italic>R</jats:italic> <jats:sup>2</jats:sup>) values (MEP: 0.950 and GEP: 0.913) indicated statistical significance, meaning that test results and anticipated outcomes were consistent with each other and with the MEP and GEP models, respectively. According to SHAP analysis, the amount of eggshell and glass powder (GP) had the most significant link with CS loss after acid deterioration, showing a positive and negative correlation, respectively. In order to optimize efficiency and cost-effectiveness, the created models possess the capability to theoretically assess the decline in CS of GP-modified mortar across various input parameter values.","PeriodicalId":54484,"journal":{"name":"Reviews on Advanced Materials Science","volume":"6 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews on Advanced Materials Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/rams-2024-0042","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The cementitious composite’s resistance to the introduction of harmful ions is the primary criterion that is used to evaluate its durability. The efficacy of glass and eggshell powder in cement mortar exposed to 5% sulfuric acid solutions was investigated in this study using artificial intelligence (AI)-aided approaches. Prediction models based on AI were built using experimental datasets with multi-expression programming (MEP) and gene expression programming (GEP) to forecast the percentage decrease in compressive strength (CS) after acid exposure. Furthermore, SHapley Additive exPlanations (SHAP) analysis was used to examine the significance of prospective constituents. The results of the experiments substantiated these models. High coefficient of determination (R2) values (MEP: 0.950 and GEP: 0.913) indicated statistical significance, meaning that test results and anticipated outcomes were consistent with each other and with the MEP and GEP models, respectively. According to SHAP analysis, the amount of eggshell and glass powder (GP) had the most significant link with CS loss after acid deterioration, showing a positive and negative correlation, respectively. In order to optimize efficiency and cost-effectiveness, the created models possess the capability to theoretically assess the decline in CS of GP-modified mortar across various input parameter values.
期刊介绍:
Reviews on Advanced Materials Science is a fully peer-reviewed, open access, electronic journal that publishes significant, original and relevant works in the area of theoretical and experimental studies of advanced materials. The journal provides the readers with free, instant, and permanent access to all content worldwide; and the authors with extensive promotion of published articles, long-time preservation, language-correction services, no space constraints and immediate publication.
Reviews on Advanced Materials Science is listed inter alia by Clarivate Analytics (formerly Thomson Reuters) - Current Contents/Physical, Chemical, and Earth Sciences (CC/PC&ES), JCR and SCIE. Our standard policy requires each paper to be reviewed by at least two Referees and the peer-review process is single-blind.