Thomas P Spargo, Chloe F Sands, Isabella R Juan, Jonathan Mitchell, Vida Ravanmehr, Jessica C Butts, Ruth B De-Paula, Youngdoo Kim, Fengyuan Hu, Quanli Wang, Dimitrios Vitsios, Manik Garg, Mirko Messa, Guillermo del Angel, Daniel G Calame, Hiba Saade, Laurie Robak, Ben Hollis, Huda Y Zoghbi, Joshua Shulman, Slavé Petrovski, Ismael Al-Ramahi, Ioanna Tachmazidou, Ryan S Dhindsa
{"title":"Haploinsufficiency of ITSN1 is associated with Parkinson's disease","authors":"Thomas P Spargo, Chloe F Sands, Isabella R Juan, Jonathan Mitchell, Vida Ravanmehr, Jessica C Butts, Ruth B De-Paula, Youngdoo Kim, Fengyuan Hu, Quanli Wang, Dimitrios Vitsios, Manik Garg, Mirko Messa, Guillermo del Angel, Daniel G Calame, Hiba Saade, Laurie Robak, Ben Hollis, Huda Y Zoghbi, Joshua Shulman, Slavé Petrovski, Ismael Al-Ramahi, Ioanna Tachmazidou, Ryan S Dhindsa","doi":"10.1101/2024.07.25.24310988","DOIUrl":null,"url":null,"abstract":"Background\nDespite its significant heritability, the genetic underpinnings of Parkinson disease (PD) remain incompletely understood, particularly the role of rare variants. Advances in population-scale sequencing now provide an unprecedented opportunity to uncover additional large-effect rare genetic risk factors and expand our understanding of disease mechanisms. Methods\nWe leveraged whole-genome sequence data with linked electronic health records from 490,560 UK Biobank participants, identifying 3,809 PD cases and 247,101 controls without a neurological disorder. We performed both variant- and gene-level association analyses to identify novel genetic associations with PD. We analyzed two additional independent case-control cohorts for replication (totaling 3,739 cases and 58,156 controls). Additionally, we performed functional validation of a novel PD association in a human synuclein-expressing Drosophila model. Findings\nIn the UK Biobank, we replicated associations in well-established loci including GBA1 and LRRK2. We also identified a novel association between protein-truncating variants (PTVs) in ITSN1 and an increased risk of PD, with an effect size exceeding those of established loci (Fisher's Exact Test: p=6.1x10-7; Odds ratio [95% confidence interval] = 10.53 [5.20, 21.34]). We replicated the ITSN1 risk signal in a meta-analysis across all cohorts (Cochran-Mantel-Haenszel test p=5.7x10-9; Odds ratio [95% confidence interval] = 9.20 [4.66, 16.70]). In Drosophila, haploinsufficiency of the ITSN1 ortholog (Dap160) exacerbated α-synuclein-induced compound eye degeneration and motor deficits. Interpretation\nWe establish ITSN1 as a novel risk gene for PD, with PTVs substantially increasing disease risk. ITSN1 encodes a scaffold protein involved in synaptic vesicle endocytosis, a critical pathway increasingly recognized in PD pathogenesis. Our findings highlight the power of large-scale sequencing coupled with preclinical functional modeling to identify rare variant associations and elucidate disease mechanisms.","PeriodicalId":501367,"journal":{"name":"medRxiv - Neurology","volume":"59 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Neurology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.07.25.24310988","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Despite its significant heritability, the genetic underpinnings of Parkinson disease (PD) remain incompletely understood, particularly the role of rare variants. Advances in population-scale sequencing now provide an unprecedented opportunity to uncover additional large-effect rare genetic risk factors and expand our understanding of disease mechanisms. Methods
We leveraged whole-genome sequence data with linked electronic health records from 490,560 UK Biobank participants, identifying 3,809 PD cases and 247,101 controls without a neurological disorder. We performed both variant- and gene-level association analyses to identify novel genetic associations with PD. We analyzed two additional independent case-control cohorts for replication (totaling 3,739 cases and 58,156 controls). Additionally, we performed functional validation of a novel PD association in a human synuclein-expressing Drosophila model. Findings
In the UK Biobank, we replicated associations in well-established loci including GBA1 and LRRK2. We also identified a novel association between protein-truncating variants (PTVs) in ITSN1 and an increased risk of PD, with an effect size exceeding those of established loci (Fisher's Exact Test: p=6.1x10-7; Odds ratio [95% confidence interval] = 10.53 [5.20, 21.34]). We replicated the ITSN1 risk signal in a meta-analysis across all cohorts (Cochran-Mantel-Haenszel test p=5.7x10-9; Odds ratio [95% confidence interval] = 9.20 [4.66, 16.70]). In Drosophila, haploinsufficiency of the ITSN1 ortholog (Dap160) exacerbated α-synuclein-induced compound eye degeneration and motor deficits. Interpretation
We establish ITSN1 as a novel risk gene for PD, with PTVs substantially increasing disease risk. ITSN1 encodes a scaffold protein involved in synaptic vesicle endocytosis, a critical pathway increasingly recognized in PD pathogenesis. Our findings highlight the power of large-scale sequencing coupled with preclinical functional modeling to identify rare variant associations and elucidate disease mechanisms.