Uniquely Realisable Graphs in Analytic Normed Planes

Pub Date : 2024-07-22 DOI:10.1093/imrn/rnae162
Sean Dewar, John Hewetson, Anthony Nixon
{"title":"Uniquely Realisable Graphs in Analytic Normed Planes","authors":"Sean Dewar, John Hewetson, Anthony Nixon","doi":"10.1093/imrn/rnae162","DOIUrl":null,"url":null,"abstract":"A framework $(G,p)$ in Euclidean space $\\mathbb{E}^{d}$ is globally rigid if it is the unique realisation, up to rigid congruences, of $G$ with the edge lengths of $(G,p)$. Building on key results of Hendrickson [28] and Connelly [14], Jackson and Jordán [29] gave a complete combinatorial characterisation of when a generic framework is global rigidity in $\\mathbb{E}^{2}$. We prove an analogous result when the Euclidean norm is replaced by any norm that is analytic on $\\mathbb{R}^{2} \\setminus \\{0\\}$. Specifically, we show that a graph $G=(V,E)$ has an open set of globally rigid realisations in a non-Euclidean analytic normed plane if and only if $G$ is 2-connected and $G-e$ contains 2 edge-disjoint spanning trees for all $e\\in E$. We also prove that the analogous necessary conditions hold in $d$-dimensional normed spaces.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imrn/rnae162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A framework $(G,p)$ in Euclidean space $\mathbb{E}^{d}$ is globally rigid if it is the unique realisation, up to rigid congruences, of $G$ with the edge lengths of $(G,p)$. Building on key results of Hendrickson [28] and Connelly [14], Jackson and Jordán [29] gave a complete combinatorial characterisation of when a generic framework is global rigidity in $\mathbb{E}^{2}$. We prove an analogous result when the Euclidean norm is replaced by any norm that is analytic on $\mathbb{R}^{2} \setminus \{0\}$. Specifically, we show that a graph $G=(V,E)$ has an open set of globally rigid realisations in a non-Euclidean analytic normed plane if and only if $G$ is 2-connected and $G-e$ contains 2 edge-disjoint spanning trees for all $e\in E$. We also prove that the analogous necessary conditions hold in $d$-dimensional normed spaces.
分享
查看原文
解析规范平面中的唯一可实现图形
如果欧几里得空间 $\mathbb{E}^{d}$ 中的 $(G,p)$是 $G$ 边长为 $(G,p)$ 的唯一实现,那么它就是全局刚性的。在亨德里克森[28]和康奈利[14]的关键结果基础上,杰克逊和乔丹[29]给出了通用框架在 $\mathbb{E}^{2}$ 中具有全局刚性时的完整组合特征。当欧几里德规范被$\mathbb{R}^{2}$上任何解析规范取代时,我们证明了类似的结果。\setminus \{0\}$。具体地说,我们证明了当且仅当 $G$ 是 2 连接的并且 $G-e$ 包含 E$ 中所有 $e\$ 的 2 个边缘相交的生成树时,图 $G=(V,E)$ 在非欧几里得解析规范平面上有一个开放的全局刚性现实集。我们还证明了类似的必要条件在 $d$ 维规范空间中成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信