{"title":"Agronomical Interventions for Improving Sugarcane Water Productivity: A Review","authors":"V. Anjaly, Vinay Kumar Sindhu, Kuldeep Singh","doi":"10.1007/s12355-024-01459-0","DOIUrl":null,"url":null,"abstract":"<div><p>Sugarcane, recognized as one of the most water-demanding crops globally, relies on ample water from either rainfall or irrigation to attain maximum productivity and profitability. Meanwhile, the amount of fresh water available per person is steadily diminishing due to rising demands from residential, industrial, and agricultural sectors. Given the dwindling groundwater reserves amid climate change and various other sustainability issues, numerous technological interventions have been proposed by researchers to improve crop and water productivity of sugarcane. Implementing the interventions, such as selecting water-efficient cultivars, optimizing planting techniques, employing micro-irrigation systems particularly subsurface drip irrigation and AI-driven sensor-based optimized and automated irrigation scheduling, can be a judicious choice. Additionally, ensuring eco-friendly straw mulching, practicing efficient nutrient management, and promoting legume intercropping contribute to better soil health and sustainable cane yield. This article provides a comprehensive overview of the innovative technologies as effective solutions to diminish energy, water and carbon footprints in sugarcane production. These novel practices enable sugarcane as an efficient rain water harvesting crop rather than a water guzzler in the sub-tropics. The ultimate goal is to foster overall growth, improve yield and produce quality canes, ultimately enhancing the livelihoods of sugarcane farmers and minimize environmental impacts.</p></div>","PeriodicalId":781,"journal":{"name":"Sugar Tech","volume":"26 4","pages":"1053 - 1067"},"PeriodicalIF":1.8000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sugar Tech","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s12355-024-01459-0","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Sugarcane, recognized as one of the most water-demanding crops globally, relies on ample water from either rainfall or irrigation to attain maximum productivity and profitability. Meanwhile, the amount of fresh water available per person is steadily diminishing due to rising demands from residential, industrial, and agricultural sectors. Given the dwindling groundwater reserves amid climate change and various other sustainability issues, numerous technological interventions have been proposed by researchers to improve crop and water productivity of sugarcane. Implementing the interventions, such as selecting water-efficient cultivars, optimizing planting techniques, employing micro-irrigation systems particularly subsurface drip irrigation and AI-driven sensor-based optimized and automated irrigation scheduling, can be a judicious choice. Additionally, ensuring eco-friendly straw mulching, practicing efficient nutrient management, and promoting legume intercropping contribute to better soil health and sustainable cane yield. This article provides a comprehensive overview of the innovative technologies as effective solutions to diminish energy, water and carbon footprints in sugarcane production. These novel practices enable sugarcane as an efficient rain water harvesting crop rather than a water guzzler in the sub-tropics. The ultimate goal is to foster overall growth, improve yield and produce quality canes, ultimately enhancing the livelihoods of sugarcane farmers and minimize environmental impacts.
期刊介绍:
The journal Sugar Tech is planned with every aim and objectives to provide a high-profile and updated research publications, comments and reviews on the most innovative, original and rigorous development in agriculture technologies for better crop improvement and production of sugar crops (sugarcane, sugar beet, sweet sorghum, Stevia, palm sugar, etc), sugar processing, bioethanol production, bioenergy, value addition and by-products. Inter-disciplinary studies of fundamental problems on the subjects are also given high priority. Thus, in addition to its full length and short papers on original research, the journal also covers regular feature articles, reviews, comments, scientific correspondence, etc.