LSTM Autoencoder-based Deep Neural Networks for Barley Genotype-to-Phenotype Prediction

Guanjin Wang, Junyu Xuan, Penghao Wang, Chengdao Li, Jie Lu
{"title":"LSTM Autoencoder-based Deep Neural Networks for Barley Genotype-to-Phenotype Prediction","authors":"Guanjin Wang, Junyu Xuan, Penghao Wang, Chengdao Li, Jie Lu","doi":"arxiv-2407.16709","DOIUrl":null,"url":null,"abstract":"Artificial Intelligence (AI) has emerged as a key driver of precision\nagriculture, facilitating enhanced crop productivity, optimized resource use,\nfarm sustainability, and informed decision-making. Also, the expansion of\ngenome sequencing technology has greatly increased crop genomic resources,\ndeepening our understanding of genetic variation and enhancing desirable crop\ntraits to optimize performance in various environments. There is increasing\ninterest in using machine learning (ML) and deep learning (DL) algorithms for\ngenotype-to-phenotype prediction due to their excellence in capturing complex\ninteractions within large, high-dimensional datasets. In this work, we propose\na new LSTM autoencoder-based model for barley genotype-to-phenotype prediction,\nspecifically for flowering time and grain yield estimation, which could\npotentially help optimize yields and management practices. Our model\noutperformed the other baseline methods, demonstrating its potential in\nhandling complex high-dimensional agricultural datasets and enhancing crop\nphenotype prediction performance.","PeriodicalId":501070,"journal":{"name":"arXiv - QuanBio - Genomics","volume":"53 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.16709","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial Intelligence (AI) has emerged as a key driver of precision agriculture, facilitating enhanced crop productivity, optimized resource use, farm sustainability, and informed decision-making. Also, the expansion of genome sequencing technology has greatly increased crop genomic resources, deepening our understanding of genetic variation and enhancing desirable crop traits to optimize performance in various environments. There is increasing interest in using machine learning (ML) and deep learning (DL) algorithms for genotype-to-phenotype prediction due to their excellence in capturing complex interactions within large, high-dimensional datasets. In this work, we propose a new LSTM autoencoder-based model for barley genotype-to-phenotype prediction, specifically for flowering time and grain yield estimation, which could potentially help optimize yields and management practices. Our model outperformed the other baseline methods, demonstrating its potential in handling complex high-dimensional agricultural datasets and enhancing crop phenotype prediction performance.
基于 LSTM 自动编码器的深度神经网络用于大麦基因型到表型预测
人工智能(AI)已成为精准农业的关键驱动力,有助于提高作物生产力、优化资源利用、农场可持续性和知情决策。此外,基因组测序技术的发展也大大增加了作物基因组资源,加深了我们对遗传变异的理解,提高了作物的理想性状,从而优化了作物在各种环境中的表现。由于机器学习(ML)和深度学习(DL)算法在捕捉大型高维数据集中的复杂相互作用方面表现出色,人们对使用这些算法进行基因型对基因型预测的兴趣与日俱增。在这项工作中,我们提出了一种基于 LSTM 自动编码器的新模型,用于大麦基因型对表型预测,特别是开花时间和谷物产量估计,这可能有助于优化产量和管理实践。我们的模型优于其他基线方法,证明了它在处理复杂的高维农业数据集和提高作物表型预测性能方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信