Boundary value problems for integro-differential and singular higher-order differential equations

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Francesca Anceschi, Alessandro Calamai, Cristina Marcelli, Francesca Papalini
{"title":"Boundary value problems for integro-differential and singular higher-order differential equations","authors":"Francesca Anceschi, Alessandro Calamai, Cristina Marcelli, Francesca Papalini","doi":"10.1515/math-2024-0008","DOIUrl":null,"url":null,"abstract":"We investigate third-order strongly nonlinear differential equations of the type <jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0008_eq_001.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"> <m:mrow> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi mathvariant=\"normal\">Φ</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>k</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:msup> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mo accent=\"true\">″</m:mo> </m:mrow> </m:msup> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo accent=\"false\">′</m:mo> <m:mo>=</m:mo> <m:mi>f</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>t</m:mi> <m:mo>,</m:mo> <m:mi>u</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>,</m:mo> <m:mi>u</m:mi> <m:mo accent=\"false\">′</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>,</m:mo> <m:msup> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mo accent=\"true\">″</m:mo> </m:mrow> </m:msup> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>,</m:mo> <m:mspace width=\"1em\"/> <m:mspace width=\"0.1em\"/> <m:mtext>a.e. on</m:mtext> <m:mspace width=\"0.1em\"/> <m:mrow> <m:mo>[</m:mo> <m:mrow> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mi>T</m:mi> </m:mrow> <m:mo>]</m:mo> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:math> <jats:tex-math>\\left(\\Phi \\left(k\\left(t){u}^{^{\\prime\\prime} }\\left(t)))^{\\prime} =f\\left(t,u\\left(t),u^{\\prime} \\left(t),{u}^{^{\\prime\\prime} }\\left(t)),\\hspace{1em}\\hspace{0.1em}\\text{a.e. on}\\hspace{0.1em}\\hspace{0.33em}\\left[0,T],</jats:tex-math> </jats:alternatives> </jats:disp-formula> where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0008_eq_002.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"normal\">Φ</m:mi> </m:math> <jats:tex-math>\\Phi </jats:tex-math> </jats:alternatives> </jats:inline-formula> is a strictly increasing homeomorphism, and the non-negative function <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0008_eq_003.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>k</m:mi> </m:math> <jats:tex-math>k</jats:tex-math> </jats:alternatives> </jats:inline-formula> may vanish on a set of measure zero. Using the upper and lower solution method, we prove existence results for some boundary value problems associated with the aforementioned equation. Moreover, we also consider second-order integro-differential equations like <jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0008_eq_004.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"> <m:mrow> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi mathvariant=\"normal\">Φ</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>k</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mi>v</m:mi> <m:mo accent=\"false\">′</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo accent=\"false\">′</m:mo> <m:mo>=</m:mo> <m:mi>f</m:mi> <m:mfenced open=\"(\" close=\")\"> <m:mrow> <m:mi>t</m:mi> <m:mo>,</m:mo> <m:munderover> <m:mrow> <m:mrow> <m:mo>∫</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> <m:mrow> <m:mi>t</m:mi> </m:mrow> </m:munderover> <m:mi>v</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>s</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mi mathvariant=\"normal\">d</m:mi> <m:mi>s</m:mi> <m:mo>,</m:mo> <m:mi>v</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>,</m:mo> <m:mi>v</m:mi> <m:mo accent=\"false\">′</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> </m:mfenced> <m:mo>,</m:mo> <m:mspace width=\"1em\"/> <m:mspace width=\"0.1em\"/> <m:mtext>a.e. on</m:mtext> <m:mspace width=\"0.1em\"/> <m:mrow> <m:mo>[</m:mo> <m:mrow> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mi>T</m:mi> </m:mrow> <m:mo>]</m:mo> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:math> <jats:tex-math>\\left(\\Phi \\left(k\\left(t)v^{\\prime} \\left(t)))^{\\prime} =f\\left(t,\\underset{0}{\\overset{t}{\\int }}v\\left(s){\\rm{d}}s,v\\left(t),v^{\\prime} \\left(t)\\right),\\hspace{1em}\\hspace{0.1em}\\text{a.e. on}\\hspace{0.1em}\\hspace{0.33em}\\left[0,T],</jats:tex-math> </jats:alternatives> </jats:disp-formula> for which we provide existence results for various types of boundary conditions, including periodic, Sturm-Liouville, and Neumann-type conditions.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/math-2024-0008","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate third-order strongly nonlinear differential equations of the type ( Φ ( k ( t ) u ( t ) ) ) = f ( t , u ( t ) , u ( t ) , u ( t ) ) , a.e. on [ 0 , T ] , \left(\Phi \left(k\left(t){u}^{^{\prime\prime} }\left(t)))^{\prime} =f\left(t,u\left(t),u^{\prime} \left(t),{u}^{^{\prime\prime} }\left(t)),\hspace{1em}\hspace{0.1em}\text{a.e. on}\hspace{0.1em}\hspace{0.33em}\left[0,T], where Φ \Phi is a strictly increasing homeomorphism, and the non-negative function k k may vanish on a set of measure zero. Using the upper and lower solution method, we prove existence results for some boundary value problems associated with the aforementioned equation. Moreover, we also consider second-order integro-differential equations like ( Φ ( k ( t ) v ( t ) ) ) = f t , 0 t v ( s ) d s , v ( t ) , v ( t ) , a.e. on [ 0 , T ] , \left(\Phi \left(k\left(t)v^{\prime} \left(t)))^{\prime} =f\left(t,\underset{0}{\overset{t}{\int }}v\left(s){\rm{d}}s,v\left(t),v^{\prime} \left(t)\right),\hspace{1em}\hspace{0.1em}\text{a.e. on}\hspace{0.1em}\hspace{0.33em}\left[0,T], for which we provide existence results for various types of boundary conditions, including periodic, Sturm-Liouville, and Neumann-type conditions.
积分微分方程和奇异高阶微分方程的边界值问题
我们研究的三阶强非线性微分方程类型为 ( Φ ( k ( t ) u ″ ( t ) ) ′ = f ( t , u ( t ) , u ′ ( t ) , u ″ ( t ) ) , a.e. on [ 0 , T ] , \left(\Phi \left(k\left(t){u}^{^{prime\prime} }\left(t)))^{\prime} =f\left(t,u\left(t),u^{prime} \left(t),{u}^{^{prime\prime} }\left(t)),\hspace{1em}\hspace{0.1em}text{a.e.关于}\hspace{0.1em}\hspace{0.33em}\left[0,T],其中Φ \Phi是严格递增的同构,非负函数k k可能在度量为零的集合上消失。利用上下解法,我们证明了与上述方程相关的一些边界值问题的存在性结果。此外,我们还考虑了二阶整微分方程,如 ( Φ ( k ( t ) v ′ ( t ) ) ′ = f t , ∫ 0 t v ( s ) d s , v ( t ) , v ′ ( t ) , a.e.on [ 0 , T ] , \left(\Phi \left(k\left(t)v^{prime} \left(t)))^{prime} =fleft(t,\underset{0}{\overset{t}{int }}v\left(s){\rm{d}}s,v\left(t),v^{\prime} \left(t)\right),\hspace{1em}\hspace{0.1em}text{a.e.on}/hspace{0.1em}/hspace{0.33em}/left[0,T],为此我们提供了各种边界条件的存在性结果,包括周期性条件、Sturm-Liouville 条件和 Neumann-type 条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信