{"title":"Long time bounds for coupled KdV equations","authors":"Yanlong Fan, Jianjun Liu, Duohui Xiang","doi":"10.1016/j.physd.2024.134296","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we consider the coupled KdV equation</p><p><span><math><mfenced><mrow><mtable><mtr><mtd><msub><mrow><mi>η</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><msub><mrow><mi>w</mi></mrow><mrow><mi>x</mi></mrow></msub><mo>+</mo><msub><mrow><mrow><mo>(</mo><mi>w</mi><mi>η</mi><mo>)</mo></mrow></mrow><mrow><mi>x</mi></mrow></msub><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>6</mn></mrow></mfrac><msub><mrow><mi>w</mi></mrow><mrow><mi>x</mi><mi>x</mi><mi>x</mi></mrow></msub></mtd><mtd><mo>=</mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><msub><mrow><mi>w</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><msub><mrow><mi>η</mi></mrow><mrow><mi>x</mi></mrow></msub><mo>+</mo><mi>w</mi><msub><mrow><mi>w</mi></mrow><mrow><mi>x</mi></mrow></msub><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>6</mn></mrow></mfrac><msub><mrow><mi>η</mi></mrow><mrow><mi>x</mi><mi>x</mi><mi>x</mi></mrow></msub></mtd><mtd><mo>=</mo><mn>0</mn></mtd></mtr></mtable></mrow></mfenced></math></span></p><p>on <span><math><mrow><mi>T</mi><mo>=</mo><mi>R</mi><mo>/</mo><mn>2</mn><mi>π</mi><mi>Z</mi></mrow></math></span> with initial data of small amplitudes <span><math><mi>ɛ</mi></math></span> in Sobolev spaces. If the first three Fourier modes of initial data are of size <span><math><msup><mrow><mi>ɛ</mi></mrow><mrow><mn>1</mn><mo>+</mo><mi>μ</mi></mrow></msup></math></span> for any <span><math><mrow><mn>0</mn><mo>≤</mo><mi>μ</mi><mo>≤</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></math></span>, we prove that the solutions remain smaller than <span><math><mrow><mn>2</mn><mi>ɛ</mi></mrow></math></span> for a time scale of order <span><math><msup><mrow><mi>ɛ</mi></mrow><mrow><mo>−</mo><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mi>μ</mi><mo>)</mo></mrow></mrow></msup></math></span> via a normal form transformation. Further, we show this order of time scale is sharp.</p></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"468 ","pages":"Article 134296"},"PeriodicalIF":2.7000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278924002471","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we consider the coupled KdV equation
on with initial data of small amplitudes in Sobolev spaces. If the first three Fourier modes of initial data are of size for any , we prove that the solutions remain smaller than for a time scale of order via a normal form transformation. Further, we show this order of time scale is sharp.
期刊介绍:
Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.