{"title":"Long time bounds for coupled KdV equations","authors":"Yanlong Fan, Jianjun Liu, Duohui Xiang","doi":"10.1016/j.physd.2024.134296","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we consider the coupled KdV equation</p><p><span><math><mfenced><mrow><mtable><mtr><mtd><msub><mrow><mi>η</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><msub><mrow><mi>w</mi></mrow><mrow><mi>x</mi></mrow></msub><mo>+</mo><msub><mrow><mrow><mo>(</mo><mi>w</mi><mi>η</mi><mo>)</mo></mrow></mrow><mrow><mi>x</mi></mrow></msub><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>6</mn></mrow></mfrac><msub><mrow><mi>w</mi></mrow><mrow><mi>x</mi><mi>x</mi><mi>x</mi></mrow></msub></mtd><mtd><mo>=</mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><msub><mrow><mi>w</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><msub><mrow><mi>η</mi></mrow><mrow><mi>x</mi></mrow></msub><mo>+</mo><mi>w</mi><msub><mrow><mi>w</mi></mrow><mrow><mi>x</mi></mrow></msub><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>6</mn></mrow></mfrac><msub><mrow><mi>η</mi></mrow><mrow><mi>x</mi><mi>x</mi><mi>x</mi></mrow></msub></mtd><mtd><mo>=</mo><mn>0</mn></mtd></mtr></mtable></mrow></mfenced></math></span></p><p>on <span><math><mrow><mi>T</mi><mo>=</mo><mi>R</mi><mo>/</mo><mn>2</mn><mi>π</mi><mi>Z</mi></mrow></math></span> with initial data of small amplitudes <span><math><mi>ɛ</mi></math></span> in Sobolev spaces. If the first three Fourier modes of initial data are of size <span><math><msup><mrow><mi>ɛ</mi></mrow><mrow><mn>1</mn><mo>+</mo><mi>μ</mi></mrow></msup></math></span> for any <span><math><mrow><mn>0</mn><mo>≤</mo><mi>μ</mi><mo>≤</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></math></span>, we prove that the solutions remain smaller than <span><math><mrow><mn>2</mn><mi>ɛ</mi></mrow></math></span> for a time scale of order <span><math><msup><mrow><mi>ɛ</mi></mrow><mrow><mo>−</mo><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mi>μ</mi><mo>)</mo></mrow></mrow></msup></math></span> via a normal form transformation. Further, we show this order of time scale is sharp.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278924002471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we consider the coupled KdV equation
on with initial data of small amplitudes in Sobolev spaces. If the first three Fourier modes of initial data are of size for any , we prove that the solutions remain smaller than for a time scale of order via a normal form transformation. Further, we show this order of time scale is sharp.