Long time bounds for coupled KdV equations

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Yanlong Fan, Jianjun Liu, Duohui Xiang
{"title":"Long time bounds for coupled KdV equations","authors":"Yanlong Fan,&nbsp;Jianjun Liu,&nbsp;Duohui Xiang","doi":"10.1016/j.physd.2024.134296","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we consider the coupled KdV equation</p><p><span><math><mfenced><mrow><mtable><mtr><mtd><msub><mrow><mi>η</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><msub><mrow><mi>w</mi></mrow><mrow><mi>x</mi></mrow></msub><mo>+</mo><msub><mrow><mrow><mo>(</mo><mi>w</mi><mi>η</mi><mo>)</mo></mrow></mrow><mrow><mi>x</mi></mrow></msub><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>6</mn></mrow></mfrac><msub><mrow><mi>w</mi></mrow><mrow><mi>x</mi><mi>x</mi><mi>x</mi></mrow></msub></mtd><mtd><mo>=</mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><msub><mrow><mi>w</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><msub><mrow><mi>η</mi></mrow><mrow><mi>x</mi></mrow></msub><mo>+</mo><mi>w</mi><msub><mrow><mi>w</mi></mrow><mrow><mi>x</mi></mrow></msub><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>6</mn></mrow></mfrac><msub><mrow><mi>η</mi></mrow><mrow><mi>x</mi><mi>x</mi><mi>x</mi></mrow></msub></mtd><mtd><mo>=</mo><mn>0</mn></mtd></mtr></mtable></mrow></mfenced></math></span></p><p>on <span><math><mrow><mi>T</mi><mo>=</mo><mi>R</mi><mo>/</mo><mn>2</mn><mi>π</mi><mi>Z</mi></mrow></math></span> with initial data of small amplitudes <span><math><mi>ɛ</mi></math></span> in Sobolev spaces. If the first three Fourier modes of initial data are of size <span><math><msup><mrow><mi>ɛ</mi></mrow><mrow><mn>1</mn><mo>+</mo><mi>μ</mi></mrow></msup></math></span> for any <span><math><mrow><mn>0</mn><mo>≤</mo><mi>μ</mi><mo>≤</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></math></span>, we prove that the solutions remain smaller than <span><math><mrow><mn>2</mn><mi>ɛ</mi></mrow></math></span> for a time scale of order <span><math><msup><mrow><mi>ɛ</mi></mrow><mrow><mo>−</mo><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mi>μ</mi><mo>)</mo></mrow></mrow></msup></math></span> via a normal form transformation. Further, we show this order of time scale is sharp.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278924002471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider the coupled KdV equation

ηt+wx+(wη)x+16wxxx=0,wt+ηx+wwx+16ηxxx=0

on T=R/2πZ with initial data of small amplitudes ɛ in Sobolev spaces. If the first three Fourier modes of initial data are of size ɛ1+μ for any 0μ12, we prove that the solutions remain smaller than 2ɛ for a time scale of order ɛ(1+μ) via a normal form transformation. Further, we show this order of time scale is sharp.

耦合 KdV 方程的长时界
在本文中,我们考虑的是耦合 KdV 方程
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信