Nonlinear dynamics and pattern formation in a space–time discrete diffusive intraguild predation model

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Renji Han , Sanaa Moussa Salman
{"title":"Nonlinear dynamics and pattern formation in a space–time discrete diffusive intraguild predation model","authors":"Renji Han ,&nbsp;Sanaa Moussa Salman","doi":"10.1016/j.physd.2024.134295","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, the spatiotemporal dynamics and pattern formation of a space–time discrete intraguild predation model with self-diffusion are investigated. The model is obtained by applying a coupled map lattice (CML) method. First, using linear stability analysis, the existence and stability conditions for fixed points are determined. Second, using the center manifold theorem and the bifurcation theory, the occurrence of flip, Neimark-Sacker, and Turing bifurcations are discussed. It is shown that the patterns obtained are results of Turing, flip, and Neimark-Sacker instabilities. Numerical simulations are performed to verify the theoretical analysis and to reveal complex and rich dynamics of the model, such as times series, maximal Lyapunov exponent, bifurcation diagrams, and phase portraits. Interesting patterns like spiral pattern, polygonal pattern, and the combinations of patterns of spiral waves and stripes are formed. The CML model’s results help to understand how a spatially extended, discrete intraguild predation model forms complex patterns. Notably, the continuous reaction–diffusion counterpart of the model under study is incapable of experiencing Turing instability.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016727892400246X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, the spatiotemporal dynamics and pattern formation of a space–time discrete intraguild predation model with self-diffusion are investigated. The model is obtained by applying a coupled map lattice (CML) method. First, using linear stability analysis, the existence and stability conditions for fixed points are determined. Second, using the center manifold theorem and the bifurcation theory, the occurrence of flip, Neimark-Sacker, and Turing bifurcations are discussed. It is shown that the patterns obtained are results of Turing, flip, and Neimark-Sacker instabilities. Numerical simulations are performed to verify the theoretical analysis and to reveal complex and rich dynamics of the model, such as times series, maximal Lyapunov exponent, bifurcation diagrams, and phase portraits. Interesting patterns like spiral pattern, polygonal pattern, and the combinations of patterns of spiral waves and stripes are formed. The CML model’s results help to understand how a spatially extended, discrete intraguild predation model forms complex patterns. Notably, the continuous reaction–diffusion counterpart of the model under study is incapable of experiencing Turing instability.

一个时空离散扩散性群内捕食模型中的非线性动力学和模式形成
本文研究了一个具有自扩散的时空离散群内捕食模型的时空动力学和模式形成。该模型是通过耦合图格(CML)方法得到的。首先,通过线性稳定性分析,确定了固定点的存在和稳定性条件。其次,利用中心流形定理和分岔理论,讨论了翻转、Neimark-Sacker 和图灵分岔的发生。结果表明,所获得的模式是图灵、翻转和奈马克-萨克不稳定性的结果。通过数值模拟验证了理论分析,并揭示了模型复杂而丰富的动态,如时间序列、最大 Lyapunov 指数、分岔图和相位肖像。形成了有趣的模式,如螺旋模式、多边形模式以及螺旋波和条纹模式的组合。CML 模型的结果有助于理解空间扩展的离散群内捕食模型是如何形成复杂模式的。值得注意的是,所研究模型的连续反应-扩散对应模型不可能出现图灵不稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信