A novel iterative model updating for jointed structures using nonlinear FRFs

IF 2.3 3区 工程技术 Q2 ACOUSTICS
Yihan Du, Xuanhua Fan, Dong Wang
{"title":"A novel iterative model updating for jointed structures using nonlinear FRFs","authors":"Yihan Du, Xuanhua Fan, Dong Wang","doi":"10.1177/10775463241263890","DOIUrl":null,"url":null,"abstract":"A novel iterative model updating method is developed to identify the local nonlinear joint properties using the frequency response functions (FRFs) of assembled structures. In this paper, the least-squares fitting method was used to transform the sensitivity matrix into a square iteration matrix to match the dimensions of the objective functions and nonlinear joint model parameters. Leveraging the Newton’s iteration, the adaptive successive over-relaxation (A-SOR) was used to ensure iteration convergence while the multi-scale parameter adjusting (MPA) strategy was developed to degrade the ill-condition of the iteration matrix. Two updating examples of phenomenological equivalence models were applied to demonstrate the effectiveness of the proposed method. The nonlinear FRFs of a lap-type bolted joint beam system with Iwan model were simulated as the objective functions to identify the local nonlinear joint properties, as well as experimental investigations of a metal rubber isolation system with a high-order polynomial model. The proposed method was validated by the good agreement of the comparison results, and it indicated a better model updating performance with a much smaller condition number of the iteration matrix.","PeriodicalId":17511,"journal":{"name":"Journal of Vibration and Control","volume":"1 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vibration and Control","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/10775463241263890","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

A novel iterative model updating method is developed to identify the local nonlinear joint properties using the frequency response functions (FRFs) of assembled structures. In this paper, the least-squares fitting method was used to transform the sensitivity matrix into a square iteration matrix to match the dimensions of the objective functions and nonlinear joint model parameters. Leveraging the Newton’s iteration, the adaptive successive over-relaxation (A-SOR) was used to ensure iteration convergence while the multi-scale parameter adjusting (MPA) strategy was developed to degrade the ill-condition of the iteration matrix. Two updating examples of phenomenological equivalence models were applied to demonstrate the effectiveness of the proposed method. The nonlinear FRFs of a lap-type bolted joint beam system with Iwan model were simulated as the objective functions to identify the local nonlinear joint properties, as well as experimental investigations of a metal rubber isolation system with a high-order polynomial model. The proposed method was validated by the good agreement of the comparison results, and it indicated a better model updating performance with a much smaller condition number of the iteration matrix.
利用非线性 FRF 对连接结构进行迭代模型更新的新方法
本文开发了一种新颖的迭代模型更新方法,利用装配结构的频率响应函数(FRF)来识别局部非线性关节特性。本文采用最小二乘拟合方法将灵敏度矩阵转换为方形迭代矩阵,以匹配目标函数和非线性关节模型参数的维度。利用牛顿迭代法,采用自适应连续过度松弛(A-SOR)确保迭代收敛,同时开发了多尺度参数调整(MPA)策略,以降低迭代矩阵的不良条件。应用了两个现象等效模型的更新实例来证明所提方法的有效性。使用 Iwan 模型模拟了搭接型螺栓连接梁系统的非线性 FRFs,作为目标函数来识别局部非线性连接特性;还使用高阶多项式模型对金属橡胶隔离系统进行了实验研究。对比结果的良好一致性验证了所提出的方法,并表明在迭代矩阵条件数更小的情况下,该方法具有更好的模型更新性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Vibration and Control
Journal of Vibration and Control 工程技术-工程:机械
CiteScore
5.20
自引率
17.90%
发文量
336
审稿时长
6 months
期刊介绍: The Journal of Vibration and Control is a peer-reviewed journal of analytical, computational and experimental studies of vibration phenomena and their control. The scope encompasses all linear and nonlinear vibration phenomena and covers topics such as: vibration and control of structures and machinery, signal analysis, aeroelasticity, neural networks, structural control and acoustics, noise and noise control, waves in solids and fluids and shock waves.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信