Q. L. Wang, L. Wang, F. Yang, J. Wang, L. Y. Sheng
{"title":"Effect of Ti Addition and Electric Field on Microstructure and Mechanical Properties of the Al-Si-Fe Hypereutectic Alloy","authors":"Q. L. Wang, L. Wang, F. Yang, J. Wang, L. Y. Sheng","doi":"10.1007/s11223-024-00656-2","DOIUrl":null,"url":null,"abstract":"<p>In the present research, the Al-Si-Fe hypereutectic alloys with different Ti addition were prepared and the electric field treatment was performed on the alloys to regulate the phase morphology. The microstructure and mechanical properties of the alloys were characterized by OM, SEM, TEM, EPMA and tensile test. The results reveal that the Al-Si-Fe hypereutectic alloy prepared by conventional casting is mainly composed cubic β-Si phase, long rod-like and needle-like β-Al<sub>5</sub>FeSi phases. In addition, there are stacking faults in the β-Al<sub>5</sub>FeSi phase. Minor Ti addition in Al-Si-Fe hypereutectic alloy could change the needle-like phase into eutectic structure, decrease the size of β-Al<sub>5</sub>FeSi phase and homogenize the β-Si phase size. The more Ti addition tends to coarsen the β-Al<sub>5</sub>FeSi and β-Si phases, and moreover the needle-like phase precipitate again. The electric field treatment promotes the coarsening of β-Al<sub>5</sub>FeSi and β-Si phases in the Al-Si-Fe hypereutectic alloy with 0-1.0 wt.% Ti addition, but results in the refinement of β-Al<sub>5</sub>FeSi and β-Si phases in 1.5 wt.% Ti doped Al-Si-Fe hypereutectic alloy. Furthermore, the needle-like phase has been transformed into small-size eutectic structure in the 1.0 and 1.5 wt.% Ti doped Al-Si-Fe hypereutectic alloys. With the synergistical effect of Ti addition and electric field treatment, the 1.5 wt.% Ti doped Al-Si-Fe hypereutectic alloy obtains yield strength of 100 MPa and ultimate tensile strength of 113 MPa, which is about 26% and 37% higher than the conventional-cast Al-Si-Fe hypereutectic alloy.</p>","PeriodicalId":22007,"journal":{"name":"Strength of Materials","volume":"21 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Strength of Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11223-024-00656-2","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
In the present research, the Al-Si-Fe hypereutectic alloys with different Ti addition were prepared and the electric field treatment was performed on the alloys to regulate the phase morphology. The microstructure and mechanical properties of the alloys were characterized by OM, SEM, TEM, EPMA and tensile test. The results reveal that the Al-Si-Fe hypereutectic alloy prepared by conventional casting is mainly composed cubic β-Si phase, long rod-like and needle-like β-Al5FeSi phases. In addition, there are stacking faults in the β-Al5FeSi phase. Minor Ti addition in Al-Si-Fe hypereutectic alloy could change the needle-like phase into eutectic structure, decrease the size of β-Al5FeSi phase and homogenize the β-Si phase size. The more Ti addition tends to coarsen the β-Al5FeSi and β-Si phases, and moreover the needle-like phase precipitate again. The electric field treatment promotes the coarsening of β-Al5FeSi and β-Si phases in the Al-Si-Fe hypereutectic alloy with 0-1.0 wt.% Ti addition, but results in the refinement of β-Al5FeSi and β-Si phases in 1.5 wt.% Ti doped Al-Si-Fe hypereutectic alloy. Furthermore, the needle-like phase has been transformed into small-size eutectic structure in the 1.0 and 1.5 wt.% Ti doped Al-Si-Fe hypereutectic alloys. With the synergistical effect of Ti addition and electric field treatment, the 1.5 wt.% Ti doped Al-Si-Fe hypereutectic alloy obtains yield strength of 100 MPa and ultimate tensile strength of 113 MPa, which is about 26% and 37% higher than the conventional-cast Al-Si-Fe hypereutectic alloy.
期刊介绍:
Strength of Materials focuses on the strength of materials and structural components subjected to different types of force and thermal loadings, the limiting strength criteria of structures, and the theory of strength of structures. Consideration is given to actual operating conditions, problems of crack resistance and theories of failure, the theory of oscillations of real mechanical systems, and calculations of the stress-strain state of structural components.