Qazi Muhammad Yasir, Zhijie Zhang, Jintong Ren, Guihong Wang, Muhammad Naveed, Zahid Jahangir, Atta-ur- Rahman
{"title":"Spectral index for estimating leaf water content across diverse plant species using multiple viewing angles","authors":"Qazi Muhammad Yasir, Zhijie Zhang, Jintong Ren, Guihong Wang, Muhammad Naveed, Zahid Jahangir, Atta-ur- Rahman","doi":"10.1117/1.jrs.18.042603","DOIUrl":null,"url":null,"abstract":"Understanding the impact of climate change on Earth presents a significant scientific challenge. Monitoring changes in terrestrial ecosystems, including leaf water content, is essential for assessing plant transpiration, water use efficiency, and physiological processes. Optical remote sensing, utilizing multi-angular reflectance measurements in the near infrared and shortwave infrared wavelengths, offers a precise method for estimating leaf water content. We propose and evaluate a new index based on multi-angular reflection, using 256 leaf samples from 10 plant species for calibration and 683 samples for validation. Hyperspectral indices derived from multi-angular spectra were assessed, facilitating efficient leaf water content analysis with minimal time and specific bands required. We investigate the relationship of leaf water content using spectral indices and apply linear and nonlinear regression models to calibration data, resulting in two indices for each indicator. The newly proposed indices, (R1−R2)/(R1−R3) for linear and (R1905−R1840)/(R1905−R1875) for nonlinear, demonstrate high coefficients of determination for leaf water content (>0.94) using multi-angular reflectance measurements. Published spectral indices exhibit weak relationships with our calibration dataset. The proposed leaf water content indices perform well, with an overall root mean square error of 0.0024 (g/cm2) and 0.0026 (g/cm2) for linear and nonlinear indices, respectively, validated by Leaf Optical Properties Experiment, ANGERS, and multi-angular datasets. The (R1−R2)/(R1−R3) bands show promise for leaf water content estimation. Future studies should encompass more plant species and field data.","PeriodicalId":54879,"journal":{"name":"Journal of Applied Remote Sensing","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1117/1.jrs.18.042603","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding the impact of climate change on Earth presents a significant scientific challenge. Monitoring changes in terrestrial ecosystems, including leaf water content, is essential for assessing plant transpiration, water use efficiency, and physiological processes. Optical remote sensing, utilizing multi-angular reflectance measurements in the near infrared and shortwave infrared wavelengths, offers a precise method for estimating leaf water content. We propose and evaluate a new index based on multi-angular reflection, using 256 leaf samples from 10 plant species for calibration and 683 samples for validation. Hyperspectral indices derived from multi-angular spectra were assessed, facilitating efficient leaf water content analysis with minimal time and specific bands required. We investigate the relationship of leaf water content using spectral indices and apply linear and nonlinear regression models to calibration data, resulting in two indices for each indicator. The newly proposed indices, (R1−R2)/(R1−R3) for linear and (R1905−R1840)/(R1905−R1875) for nonlinear, demonstrate high coefficients of determination for leaf water content (>0.94) using multi-angular reflectance measurements. Published spectral indices exhibit weak relationships with our calibration dataset. The proposed leaf water content indices perform well, with an overall root mean square error of 0.0024 (g/cm2) and 0.0026 (g/cm2) for linear and nonlinear indices, respectively, validated by Leaf Optical Properties Experiment, ANGERS, and multi-angular datasets. The (R1−R2)/(R1−R3) bands show promise for leaf water content estimation. Future studies should encompass more plant species and field data.
期刊介绍:
The Journal of Applied Remote Sensing is a peer-reviewed journal that optimizes the communication of concepts, information, and progress among the remote sensing community.