Multi-View Cooperative Learning with Invariant Rationale for Document-Level Relation Extraction

IF 4.3 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Rui Lin, Jing Fan, Yinglong He, Yehui Yang, Jia Li, Cunhan Guo
{"title":"Multi-View Cooperative Learning with Invariant Rationale for Document-Level Relation Extraction","authors":"Rui Lin, Jing Fan, Yinglong He, Yehui Yang, Jia Li, Cunhan Guo","doi":"10.1007/s12559-024-10322-z","DOIUrl":null,"url":null,"abstract":"<p>Document-level relation extraction (RE) is a complex and significant natural language processing task, as the massive entity pairs exist in the document and are across sentences in reality. However, the existing relation extraction methods (deep learning) often use single-view information (e.g., entity-level or sentence-level) to learn the relational information but ignore the multi-view information, and the explanations of deep learning are difficult to be reflected, although it achieves good results. To extract high-quality relational information from the document and improve the explanations of the model, we propose a multi-view cooperative learning with invariant rationale (MCLIR) framework. Firstly, we design the multi-view cooperative learning to find latent relational information from the various views. Secondly, we utilize invariant rationale to encourage the model to focus on crucial information, which can empower the performance and explanations of the model. We conduct the experiment on two public datasets, and the results of the experiment demonstrate the effectiveness of MCLIR.</p>","PeriodicalId":51243,"journal":{"name":"Cognitive Computation","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Computation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12559-024-10322-z","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Document-level relation extraction (RE) is a complex and significant natural language processing task, as the massive entity pairs exist in the document and are across sentences in reality. However, the existing relation extraction methods (deep learning) often use single-view information (e.g., entity-level or sentence-level) to learn the relational information but ignore the multi-view information, and the explanations of deep learning are difficult to be reflected, although it achieves good results. To extract high-quality relational information from the document and improve the explanations of the model, we propose a multi-view cooperative learning with invariant rationale (MCLIR) framework. Firstly, we design the multi-view cooperative learning to find latent relational information from the various views. Secondly, we utilize invariant rationale to encourage the model to focus on crucial information, which can empower the performance and explanations of the model. We conduct the experiment on two public datasets, and the results of the experiment demonstrate the effectiveness of MCLIR.

Abstract Image

利用不变原理进行文档级关系提取的多视图合作学习
文档级关系抽取(RE)是一项复杂而重要的自然语言处理任务,因为大量实体对存在于文档中,并且在现实中是跨句子的。然而,现有的关系提取方法(深度学习)往往使用单视角信息(如实体级或句子级)来学习关系信息,却忽略了多视角信息,虽然取得了不错的效果,但深度学习的解释性难以体现。为了从文档中提取高质量的关系信息并改进模型的解释,我们提出了一种具有不变理由的多视图合作学习(MCLIR)框架。首先,我们设计了多视图合作学习,以从不同视图中找到潜在的关系信息。其次,我们利用不变量原理来鼓励模型关注关键信息,从而提高模型的性能和解释能力。我们在两个公共数据集上进行了实验,实验结果证明了 MCLIR 的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cognitive Computation
Cognitive Computation COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-NEUROSCIENCES
CiteScore
9.30
自引率
3.70%
发文量
116
审稿时长
>12 weeks
期刊介绍: Cognitive Computation is an international, peer-reviewed, interdisciplinary journal that publishes cutting-edge articles describing original basic and applied work involving biologically-inspired computational accounts of all aspects of natural and artificial cognitive systems. It provides a new platform for the dissemination of research, current practices and future trends in the emerging discipline of cognitive computation that bridges the gap between life sciences, social sciences, engineering, physical and mathematical sciences, and humanities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信