{"title":"An insect vision-inspired neuromorphic vision systems in low-light obstacle avoidance for intelligent vehicles","authors":"Haiyang Wang, Songwei Wang, Longlong Qian","doi":"10.1007/s00138-024-01582-8","DOIUrl":null,"url":null,"abstract":"<p>The Lobular Giant Motion Detector (LGMD) is a neuron in the insect visual system that has been extensively studied, especially in locusts. This neuron is highly sensitive to rapidly approaching objects, allowing insects to react quickly to avoid potential threats such as approaching predators or obstacles. In the realm of intelligent vehicles, due to the lack of performance of conventional RGB cameras in extreme light conditions or at high-speed movements. Inspired by biological mechanisms, we have developed a novel neuromorphic dynamic vision sensor (DVS) driven LGMD spiking neural network (SNN) model. SNNs, distinguished by their bio-inspired spiking dynamics, offer a unique advantage in processing time-varying visual data, particularly in scenarios where rapid response and energy efficiency are paramount. Our model incorporates two distinct types of Leaky Integrate-and-Fire (LIF) neuron models and synapse models, which have been instrumental in reducing network latency and enhancing the system’s reaction speed. And addressing the challenge of noise in event streams, we have implemented denoising techniques to ensure the integrity of the input data. Integrating the proposed methods, ultimately, the model was integrated into an intelligent vehicle to conduct real-time obstacle avoidance testing in response to looming objects in simulated real scenarios. The experimental results show that the model’s ability to compensate for the limitations of traditional RGB cameras in detecting looming targets in the dark, and can detect looming targets and implement effective obstacle avoidance in complex and diverse dark environments.</p>","PeriodicalId":51116,"journal":{"name":"Machine Vision and Applications","volume":"40 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Vision and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00138-024-01582-8","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The Lobular Giant Motion Detector (LGMD) is a neuron in the insect visual system that has been extensively studied, especially in locusts. This neuron is highly sensitive to rapidly approaching objects, allowing insects to react quickly to avoid potential threats such as approaching predators or obstacles. In the realm of intelligent vehicles, due to the lack of performance of conventional RGB cameras in extreme light conditions or at high-speed movements. Inspired by biological mechanisms, we have developed a novel neuromorphic dynamic vision sensor (DVS) driven LGMD spiking neural network (SNN) model. SNNs, distinguished by their bio-inspired spiking dynamics, offer a unique advantage in processing time-varying visual data, particularly in scenarios where rapid response and energy efficiency are paramount. Our model incorporates two distinct types of Leaky Integrate-and-Fire (LIF) neuron models and synapse models, which have been instrumental in reducing network latency and enhancing the system’s reaction speed. And addressing the challenge of noise in event streams, we have implemented denoising techniques to ensure the integrity of the input data. Integrating the proposed methods, ultimately, the model was integrated into an intelligent vehicle to conduct real-time obstacle avoidance testing in response to looming objects in simulated real scenarios. The experimental results show that the model’s ability to compensate for the limitations of traditional RGB cameras in detecting looming targets in the dark, and can detect looming targets and implement effective obstacle avoidance in complex and diverse dark environments.
期刊介绍:
Machine Vision and Applications publishes high-quality technical contributions in machine vision research and development. Specifically, the editors encourage submittals in all applications and engineering aspects of image-related computing. In particular, original contributions dealing with scientific, commercial, industrial, military, and biomedical applications of machine vision, are all within the scope of the journal.
Particular emphasis is placed on engineering and technology aspects of image processing and computer vision.
The following aspects of machine vision applications are of interest: algorithms, architectures, VLSI implementations, AI techniques and expert systems for machine vision, front-end sensing, multidimensional and multisensor machine vision, real-time techniques, image databases, virtual reality and visualization. Papers must include a significant experimental validation component.