Antonio Boccuto, Ivan Gerace, Valentina Giorgetti, Francesca Martinelli, Anna Tonazzini
{"title":"An Edge-Preserving Regularization Model for the Demosaicing of Noisy Color Images","authors":"Antonio Boccuto, Ivan Gerace, Valentina Giorgetti, Francesca Martinelli, Anna Tonazzini","doi":"10.1007/s10851-024-01204-y","DOIUrl":null,"url":null,"abstract":"<p>This paper proposes an edge-preserving regularization technique to solve the color image demosaicing problem in the realistic case of noisy data. We enforce intra-channel local smoothness of the intensity (low-frequency components) and inter-channel local similarity of the depth of object borders and textures (high-frequency components). Discontinuities of both the low-frequency and high-frequency components are accounted for implicitly, i.e., through suitable functions of the proper derivatives. For the treatment of even the finest image details, derivatives of first, second, and third orders are considered. The solution to the demosaicing problem is defined as the minimizer of an energy function, accounting for all these constraints plus a data fidelity term. This non-convex energy is minimized via an iterative deterministic algorithm, applied to a family of approximating functions, each implicitly referring to geometrically consistent image edges. Our method is general because it does not refer to any specific color filter array. However, to allow quantitative comparisons with other published results, we tested it in the case of the Bayer CFA and on the Kodak 24-image dataset, the McMaster (IMAX) 18-image dataset, the Microsoft Demosaicing Canon 57-image dataset, and the Microsoft Demosaicing Panasonic 500-image dataset. The comparisons with some of the most recent demosaicing algorithms show the good performance of our method in both the noiseless and noisy cases.</p>","PeriodicalId":16196,"journal":{"name":"Journal of Mathematical Imaging and Vision","volume":"20 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Imaging and Vision","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10851-024-01204-y","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes an edge-preserving regularization technique to solve the color image demosaicing problem in the realistic case of noisy data. We enforce intra-channel local smoothness of the intensity (low-frequency components) and inter-channel local similarity of the depth of object borders and textures (high-frequency components). Discontinuities of both the low-frequency and high-frequency components are accounted for implicitly, i.e., through suitable functions of the proper derivatives. For the treatment of even the finest image details, derivatives of first, second, and third orders are considered. The solution to the demosaicing problem is defined as the minimizer of an energy function, accounting for all these constraints plus a data fidelity term. This non-convex energy is minimized via an iterative deterministic algorithm, applied to a family of approximating functions, each implicitly referring to geometrically consistent image edges. Our method is general because it does not refer to any specific color filter array. However, to allow quantitative comparisons with other published results, we tested it in the case of the Bayer CFA and on the Kodak 24-image dataset, the McMaster (IMAX) 18-image dataset, the Microsoft Demosaicing Canon 57-image dataset, and the Microsoft Demosaicing Panasonic 500-image dataset. The comparisons with some of the most recent demosaicing algorithms show the good performance of our method in both the noiseless and noisy cases.
期刊介绍:
The Journal of Mathematical Imaging and Vision is a technical journal publishing important new developments in mathematical imaging. The journal publishes research articles, invited papers, and expository articles.
Current developments in new image processing hardware, the advent of multisensor data fusion, and rapid advances in vision research have led to an explosive growth in the interdisciplinary field of imaging science. This growth has resulted in the development of highly sophisticated mathematical models and theories. The journal emphasizes the role of mathematics as a rigorous basis for imaging science. This provides a sound alternative to present journals in this area. Contributions are judged on the basis of mathematical content. Articles may be physically speculative but need to be mathematically sound. Emphasis is placed on innovative or established mathematical techniques applied to vision and imaging problems in a novel way, as well as new developments and problems in mathematics arising from these applications.
The scope of the journal includes:
computational models of vision; imaging algebra and mathematical morphology
mathematical methods in reconstruction, compactification, and coding
filter theory
probabilistic, statistical, geometric, topological, and fractal techniques and models in imaging science
inverse optics
wave theory.
Specific application areas of interest include, but are not limited to:
all aspects of image formation and representation
medical, biological, industrial, geophysical, astronomical and military imaging
image analysis and image understanding
parallel and distributed computing
computer vision architecture design.