{"title":"Analysis and numerical methods for nonlocal‐in‐time Allen‐Cahn equation","authors":"Hongwei Li, Jiang Yang, Wei Zhang","doi":"10.1002/num.23124","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the nonlocal‐in‐time Allen‐Cahn equation (NiTACE), which incorporates a nonlocal operator in time with a finite nonlocal memory. Our objective is to examine the well‐posedness of the NiTACE by establishing the maximal regularity for the nonlocal‐in‐time parabolic equations with fractional power kernels. Furthermore, we derive a uniform energy bound by leveraging the positive definite property of kernel functions. We also develop an energy‐stable time stepping scheme specifically designed for the NiTACE. Additionally, we analyze the discrete maximum principle and energy dissipation law, which hold significant importance for phase field models. To ensure convergence, we verify the asymptotic compatibility of the proposed stable scheme. Lastly, we provide several numerical examples to illustrate the accuracy and effectiveness of our method.","PeriodicalId":19443,"journal":{"name":"Numerical Methods for Partial Differential Equations","volume":"326 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Methods for Partial Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/num.23124","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we investigate the nonlocal‐in‐time Allen‐Cahn equation (NiTACE), which incorporates a nonlocal operator in time with a finite nonlocal memory. Our objective is to examine the well‐posedness of the NiTACE by establishing the maximal regularity for the nonlocal‐in‐time parabolic equations with fractional power kernels. Furthermore, we derive a uniform energy bound by leveraging the positive definite property of kernel functions. We also develop an energy‐stable time stepping scheme specifically designed for the NiTACE. Additionally, we analyze the discrete maximum principle and energy dissipation law, which hold significant importance for phase field models. To ensure convergence, we verify the asymptotic compatibility of the proposed stable scheme. Lastly, we provide several numerical examples to illustrate the accuracy and effectiveness of our method.
期刊介绍:
An international journal that aims to cover research into the development and analysis of new methods for the numerical solution of partial differential equations, it is intended that it be readily readable by and directed to a broad spectrum of researchers into numerical methods for partial differential equations throughout science and engineering. The numerical methods and techniques themselves are emphasized rather than the specific applications. The Journal seeks to be interdisciplinary, while retaining the common thread of applied numerical analysis.