Magnesium oxide (MgO) is favored for solid-state carbon dioxide (CO2) capture due to its high theoretical adsorption capacity, abundant reserves, low cost, and environmental friendliness. However, its practical application in industry is hindered by low CO2 adsorption capacity under moderate operating conditions. In this work, MgO was modified by a deposition method using LiNO3, NaNO3, KNO3, Na2CO3 and K2CO3 as additives.
RESULTS
The study determines optimal ratios within the [(Li, Na, K)x − (Na, K)]y/MgO system, specifically identifying x = 0.5 and y = 0.15 as most effective. At 275 °C under pure CO2 conditions, the adsorption capacity peaks at 0.631 g CO2 g−1 adsorbent. Effective regeneration of the adsorbent occurs at 400 °C under 100% N2 for 15 min. Under Integrated Gasification Combined Cycle (IGCC) conditions, the adsorption capacity stabilizes at 0.462 g g−1 after 20 cycles, representing a 25% decrease from initial capacity.
期刊介绍:
Journal of Chemical Technology and Biotechnology(JCTB) is an international, inter-disciplinary peer-reviewed journal concerned with the application of scientific discoveries and advancements in chemical and biological technology that aim towards economically and environmentally sustainable industrial processes.