Projective geometries, $Q$-polynomial structures, and quantum groups

Paul Terwilliger
{"title":"Projective geometries, $Q$-polynomial structures, and quantum groups","authors":"Paul Terwilliger","doi":"arxiv-2407.14964","DOIUrl":null,"url":null,"abstract":"In 2023 we obtained a $Q$-polynomial structure for the projective geometry\n$L_N(q)$. In the present paper, we display a more general $Q$-polynomial\nstructure for $L_N(q)$. Our new $Q$-polynomial structure is defined using a\nfree parameter $\\varphi$ that takes any positive real value. For $\\varphi=1$ we\nrecover the original $Q$-polynomial structure. We interpret the new\n$Q$-polynomial structure using the quantum group $U_{q^{1/2}}(\\mathfrak{sl}_2)$\nin the equitable presentation. We use the new $Q$-polynomial structure to\nobtain analogs of the four split decompositions that appear in the theory of\n$Q$-polynomial distance-regular graphs.","PeriodicalId":501317,"journal":{"name":"arXiv - MATH - Quantum Algebra","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Quantum Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.14964","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In 2023 we obtained a $Q$-polynomial structure for the projective geometry $L_N(q)$. In the present paper, we display a more general $Q$-polynomial structure for $L_N(q)$. Our new $Q$-polynomial structure is defined using a free parameter $\varphi$ that takes any positive real value. For $\varphi=1$ we recover the original $Q$-polynomial structure. We interpret the new $Q$-polynomial structure using the quantum group $U_{q^{1/2}}(\mathfrak{sl}_2)$ in the equitable presentation. We use the new $Q$-polynomial structure to obtain analogs of the four split decompositions that appear in the theory of $Q$-polynomial distance-regular graphs.
投影几何、Q$-多项式结构和量子群
2023 年,我们获得了投影几何$L_N(q)$的$Q$-多项式结构。在本文中,我们为$L_N(q)$展示了一个更一般的$Q$-多项式结构。我们新的 $Q$-polynomial 结构是用一个自由参数 $\varphi$ 来定义的,它可以取任何正实值。当$\varphi=1$时,我们将覆盖原来的$Q$-多项式结构。我们用等价呈现中的量子群 $U_{q^{1/2}}(\mathfrak{sl}_2)$来解释新的$Q$-多项式结构。我们利用新的 $Q$-polynomial 结构来获得在 $Q$-polynomial 距离规则图理论中出现的四种分裂分解的类似物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信