Ki-Baek Roh, Myeong-Geon Lee, Kyung-Min Kim, Gon-Ho Kim
{"title":"Macrocrack propagation with grain growth on transient heat loaded tungsten","authors":"Ki-Baek Roh, Myeong-Geon Lee, Kyung-Min Kim, Gon-Ho Kim","doi":"10.1007/s40042-024-01139-y","DOIUrl":null,"url":null,"abstract":"<div><p>The propagation of microcrack and grain growth in tungsten occurred at condition of transient heat loads was investigated experimentally, observing the effect on macrocrack development induced by stress intensification in time order. The temperature variation in short time, with frequency 30 Hz, heat flux 0.1 GWm<sup>−2</sup>, duration 2 ms at base temperature 1150 °C, induces fatigue fracture on the surface of tungsten, resulting in the formation of microcrack. Since the effective spatial temperature variation is limited to a few micron, microcrack is also occurred at the comparable depth. Following the initiation of microcrack, the grain growth propagation depth over time is measured and calculated based on the grain growth model with measuring the associated constants of the model. Within the grain growth layer, the degraded material properties at the microcrack tip lead to stress intensification which ultimately develop into macrocrack with order of millimeters. The study investigates that the subsurface microstructural changes in tungsten, caused by transient heat loads, have the potential to develop into macrocrack that extend into the deeper bulk area.</p></div>","PeriodicalId":677,"journal":{"name":"Journal of the Korean Physical Society","volume":"85 4","pages":"305 - 314"},"PeriodicalIF":0.8000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Physical Society","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s40042-024-01139-y","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The propagation of microcrack and grain growth in tungsten occurred at condition of transient heat loads was investigated experimentally, observing the effect on macrocrack development induced by stress intensification in time order. The temperature variation in short time, with frequency 30 Hz, heat flux 0.1 GWm−2, duration 2 ms at base temperature 1150 °C, induces fatigue fracture on the surface of tungsten, resulting in the formation of microcrack. Since the effective spatial temperature variation is limited to a few micron, microcrack is also occurred at the comparable depth. Following the initiation of microcrack, the grain growth propagation depth over time is measured and calculated based on the grain growth model with measuring the associated constants of the model. Within the grain growth layer, the degraded material properties at the microcrack tip lead to stress intensification which ultimately develop into macrocrack with order of millimeters. The study investigates that the subsurface microstructural changes in tungsten, caused by transient heat loads, have the potential to develop into macrocrack that extend into the deeper bulk area.
期刊介绍:
The Journal of the Korean Physical Society (JKPS) covers all fields of physics spanning from statistical physics and condensed matter physics to particle physics. The manuscript to be published in JKPS is required to hold the originality, significance, and recent completeness. The journal is composed of Full paper, Letters, and Brief sections. In addition, featured articles with outstanding results are selected by the Editorial board and introduced in the online version. For emphasis on aspect of international journal, several world-distinguished researchers join the Editorial board. High quality of papers may be express-published when it is recommended or requested.