Jung-Min Cho, Yun-Ho Kim, Won-Yong Lee, Jae Won Choi, No-Won Park, Sree Sourav Das, Mona Zebarjadi, Gil-Sung Kim, Sang-Kwon Lee
{"title":"Enhanced figure of merit of polycrystalline PtSe2/PtSe2 structures at room temperature by a facile wet-transfer stacking method","authors":"Jung-Min Cho, Yun-Ho Kim, Won-Yong Lee, Jae Won Choi, No-Won Park, Sree Sourav Das, Mona Zebarjadi, Gil-Sung Kim, Sang-Kwon Lee","doi":"10.1007/s40042-024-01147-y","DOIUrl":null,"url":null,"abstract":"<div><p>We report a promising strategy to enhance the in-plane thermoelectric (TE) figure of merit (ZT) of few-layer semimetallic PtSe<sub>2</sub> films at 300 K by piling up PtSe<sub>2</sub> layers with the same thickness (3 nm) as stacked PtSe<sub>2</sub>/PtSe<sub>2</sub> (3-nm/3-nm) homostructures by a wet-transfer method. We observed that the Seebeck coefficient was enhanced meaningfully upon increasing the number of stacked layers and exceeded ~ 173.2 μV/K with a relatively constant electrical conductivity of ~ 18.4 S/cm at 300 K. By contrast, as the number of layers increased, thermal conductivity also showed a significant reduction, and ultimately, the ZT factor increased by ~ 380% compared to the single-stacked PtSe<sub>2</sub> structure. Such an increase in the ZT factor shows the possibility of a considerable improvement in the TE properties of semimetallic PtSe<sub>2</sub> with a new technique called facile wet-transfer stacking. The proposed method is expected to play a very important role in future microscopic cooling and energy-generating TE device applications.</p></div>","PeriodicalId":677,"journal":{"name":"Journal of the Korean Physical Society","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Physical Society","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s40042-024-01147-y","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We report a promising strategy to enhance the in-plane thermoelectric (TE) figure of merit (ZT) of few-layer semimetallic PtSe2 films at 300 K by piling up PtSe2 layers with the same thickness (3 nm) as stacked PtSe2/PtSe2 (3-nm/3-nm) homostructures by a wet-transfer method. We observed that the Seebeck coefficient was enhanced meaningfully upon increasing the number of stacked layers and exceeded ~ 173.2 μV/K with a relatively constant electrical conductivity of ~ 18.4 S/cm at 300 K. By contrast, as the number of layers increased, thermal conductivity also showed a significant reduction, and ultimately, the ZT factor increased by ~ 380% compared to the single-stacked PtSe2 structure. Such an increase in the ZT factor shows the possibility of a considerable improvement in the TE properties of semimetallic PtSe2 with a new technique called facile wet-transfer stacking. The proposed method is expected to play a very important role in future microscopic cooling and energy-generating TE device applications.
期刊介绍:
The Journal of the Korean Physical Society (JKPS) covers all fields of physics spanning from statistical physics and condensed matter physics to particle physics. The manuscript to be published in JKPS is required to hold the originality, significance, and recent completeness. The journal is composed of Full paper, Letters, and Brief sections. In addition, featured articles with outstanding results are selected by the Editorial board and introduced in the online version. For emphasis on aspect of international journal, several world-distinguished researchers join the Editorial board. High quality of papers may be express-published when it is recommended or requested.