Design and theoretical study of rectangular photonic crystal fiber based sensor for chemical sensing in terahertz regime

IF 1.6 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Deepak Garg, Jyotsna Singh, Ajeet Kumar
{"title":"Design and theoretical study of rectangular photonic crystal fiber based sensor for chemical sensing in terahertz regime","authors":"Deepak Garg, Jyotsna Singh, Ajeet Kumar","doi":"10.1007/s12648-024-03343-9","DOIUrl":null,"url":null,"abstract":"<p>This paper presents the design and theoretical analysis of a photonic crystal fiber (PCF) based chemical sensor model. To evaluate the efficiency of this model, various optical parameters are analysed using finite element method based COMSOL Multiphysics Software. Different analytes namely methanol (1.317), water (1.330), ethanol (1.354) and benzene (1.366) have been considered for the sensing purpose in this study. The core region is infiltrated with different analytes separately. The model is simulated in THz regime (0.5–1.5 THz) to evaluate optical properties. The proposed structure design exhibits a high relative sensitivity of 96.85%, 97.32%, 97.99% and 98.33% for methanol, water, ethanol, and benzene, respectively at an operating frequency of 1.3 THz. The proposed model demonstrates exceptionally low confinement loss values which are 2.22 × 10<sup>–12</sup> dB/m for methanol, 1.16 × 10<sup>–11</sup> dB/m for water, 1.34 × 10<sup>–11</sup> dB/m for ethanol and is 1.30 × 10<sup>–12</sup> dB/m for benzene. Additionally, the effective material loss for the designed PCF also comes out to be very low for all the analytes, 0.0044 cm<sup>−1</sup> for methanol, 0.0040 cm<sup>−1</sup> water, 0.0034 cm<sup>−1</sup> for ethanol and 0.0032 cm<sup>−1</sup>, for benzene. Furthermore, the PCF shows large effective mode area and numerical aperture (NA) within the mentioned range, at 1.3 THz. The NA values obtained at 1.3 THz are 0.32 for methanol, 0.40 for water, 0.32 for ethanol, and 0.32 for benzene. The obtained Effective mode Area (EMA) values are 1.46 × 10<sup>5</sup> μm<sup>2</sup> for methanol, 1.45 × 10<sup>5</sup> μm<sup>2</sup> for water, 1.44 × 10<sup>5</sup> μm<sup>2</sup> for ethanol and 1.43 × 10<sup>5</sup> μm<sup>2</sup>, for benzene. Subsequently, the optimal profile provides birefringence values of 0.0009 for methanol, 0.0010 for water, and 0.0011 for both ethanol and benzene. The practical implementation of the proposed PCF structure is possible using subsisting modern fabrication techniques. Consequently, the proposed PCF design should be helpful in industrial areas for chemical research, food and biomedical sensing.</p>","PeriodicalId":584,"journal":{"name":"Indian Journal of Physics","volume":"3 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s12648-024-03343-9","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents the design and theoretical analysis of a photonic crystal fiber (PCF) based chemical sensor model. To evaluate the efficiency of this model, various optical parameters are analysed using finite element method based COMSOL Multiphysics Software. Different analytes namely methanol (1.317), water (1.330), ethanol (1.354) and benzene (1.366) have been considered for the sensing purpose in this study. The core region is infiltrated with different analytes separately. The model is simulated in THz regime (0.5–1.5 THz) to evaluate optical properties. The proposed structure design exhibits a high relative sensitivity of 96.85%, 97.32%, 97.99% and 98.33% for methanol, water, ethanol, and benzene, respectively at an operating frequency of 1.3 THz. The proposed model demonstrates exceptionally low confinement loss values which are 2.22 × 10–12 dB/m for methanol, 1.16 × 10–11 dB/m for water, 1.34 × 10–11 dB/m for ethanol and is 1.30 × 10–12 dB/m for benzene. Additionally, the effective material loss for the designed PCF also comes out to be very low for all the analytes, 0.0044 cm−1 for methanol, 0.0040 cm−1 water, 0.0034 cm−1 for ethanol and 0.0032 cm−1, for benzene. Furthermore, the PCF shows large effective mode area and numerical aperture (NA) within the mentioned range, at 1.3 THz. The NA values obtained at 1.3 THz are 0.32 for methanol, 0.40 for water, 0.32 for ethanol, and 0.32 for benzene. The obtained Effective mode Area (EMA) values are 1.46 × 105 μm2 for methanol, 1.45 × 105 μm2 for water, 1.44 × 105 μm2 for ethanol and 1.43 × 105 μm2, for benzene. Subsequently, the optimal profile provides birefringence values of 0.0009 for methanol, 0.0010 for water, and 0.0011 for both ethanol and benzene. The practical implementation of the proposed PCF structure is possible using subsisting modern fabrication techniques. Consequently, the proposed PCF design should be helpful in industrial areas for chemical research, food and biomedical sensing.

Abstract Image

基于矩形光子晶体光纤的太赫兹化学传感传感器的设计与理论研究
本文介绍了基于光子晶体光纤(PCF)的化学传感器模型的设计和理论分析。为了评估该模型的效率,使用基于有限元法的 COMSOL Multiphysics 软件对各种光学参数进行了分析。本研究考虑了不同的分析物,即甲醇(1.317)、水(1.330)、乙醇(1.354)和苯(1.366)。核心区域分别渗入不同的分析物。在太赫兹(0.5-1.5 太赫兹)范围内对模型进行了模拟,以评估其光学特性。在工作频率为 1.3 THz 时,所提出的结构设计对甲醇、水、乙醇和苯的相对灵敏度分别为 96.85%、97.32%、97.99% 和 98.33%。所提出的模型具有极低的约束损耗值,甲醇为 2.22 × 10-12 dB/m,水为 1.16 × 10-11 dB/m,乙醇为 1.34 × 10-11 dB/m,苯为 1.30 × 10-12 dB/m。此外,设计的 PCF 对所有分析物的有效材料损耗也非常低,甲醇为 0.0044 cm-1,水为 0.0040 cm-1,乙醇为 0.0034 cm-1,苯为 0.0032 cm-1。此外,在上述范围内,PCF 在 1.3 THz 时显示出较大的有效模式面积和数值孔径(NA)。在 1.3 THz 时,甲醇的 NA 值为 0.32,水为 0.40,乙醇为 0.32,苯为 0.32。甲醇的有效模式面积 (EMA) 值为 1.46 × 105 μm2,水为 1.45 × 105 μm2,乙醇为 1.44 × 105 μm2,苯为 1.43 × 105 μm2。随后,最佳剖面的双折射值分别为:甲醇 0.0009,水 0.0010,乙醇和苯 0.0011。利用现有的现代制造技术,可以实际实现所提出的 PCF 结构。因此,建议的 PCF 设计应有助于化学研究、食品和生物医学传感等工业领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Indian Journal of Physics
Indian Journal of Physics 物理-物理:综合
CiteScore
3.40
自引率
10.00%
发文量
275
审稿时长
3-8 weeks
期刊介绍: Indian Journal of Physics is a monthly research journal in English published by the Indian Association for the Cultivation of Sciences in collaboration with the Indian Physical Society. The journal publishes refereed papers covering current research in Physics in the following category: Astrophysics, Atmospheric and Space physics; Atomic & Molecular Physics; Biophysics; Condensed Matter & Materials Physics; General & Interdisciplinary Physics; Nonlinear dynamics & Complex Systems; Nuclear Physics; Optics and Spectroscopy; Particle Physics; Plasma Physics; Relativity & Cosmology; Statistical Physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信