Mechanically and Conductively Robust Eutectogel Fiber Produced by Continuous Wet Spinning Enables Epidermal and Implantable Electrophysiological Monitoring
IF 17.2 1区 工程技术Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
{"title":"Mechanically and Conductively Robust Eutectogel Fiber Produced by Continuous Wet Spinning Enables Epidermal and Implantable Electrophysiological Monitoring","authors":"Shufeng Hu, Jingya Song, Qiong Tian, Chen Zeng, Yuchen Jiang, Qihua Li, Jun Xu, Wei Yan, Jun Li, Zhiyuan Liu, Weiqing Kong, Meifang Zhu","doi":"10.1007/s42765-024-00470-0","DOIUrl":null,"url":null,"abstract":"<div><p>In recent years, the collection and monitoring of human physiological signals have garnered increasing attention due to their wide-ranging applications in healthcare, human–machine interaction, sports, and other fields. However, the continuous fabrication of flexible gel fiber electrodes with high mechanical performance, high conductivity, and durability for extreme environments using a simple, efficient, and universal strategy remains challenging for physiological signal acquisition. Here, we have employed a strategy of solvent replacement and multi-level hydrogen bond enhancement to construct eutectogel fibers with continuous solid–liquid structure, achieving continuous production of fibers with high strength, high conductivity, and low-temperature resistance. In the fiber, PVA serves as the solid-state elastic phase, DES as the liquid ionic conductive phase, and CNF as the reinforcement phase. The resulting eutectogel fibers exhibit excellent tensile strength (37.3 MPa), good elongation (> 700%), high electrical conductivity (0.543 S/m), and resistance to extreme dry and −60 °C low-temperature environments. Furthermore, these eutectogel fibers demonstrate high sensitivity for monitoring joint movements and effectively detecting in vitro and in vivo signals, show casing their potential for wearable strain sensors and monitoring physiological signals.</p></div>","PeriodicalId":459,"journal":{"name":"Advanced Fiber Materials","volume":"6 6","pages":"1980 - 1991"},"PeriodicalIF":17.2000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Fiber Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42765-024-00470-0","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, the collection and monitoring of human physiological signals have garnered increasing attention due to their wide-ranging applications in healthcare, human–machine interaction, sports, and other fields. However, the continuous fabrication of flexible gel fiber electrodes with high mechanical performance, high conductivity, and durability for extreme environments using a simple, efficient, and universal strategy remains challenging for physiological signal acquisition. Here, we have employed a strategy of solvent replacement and multi-level hydrogen bond enhancement to construct eutectogel fibers with continuous solid–liquid structure, achieving continuous production of fibers with high strength, high conductivity, and low-temperature resistance. In the fiber, PVA serves as the solid-state elastic phase, DES as the liquid ionic conductive phase, and CNF as the reinforcement phase. The resulting eutectogel fibers exhibit excellent tensile strength (37.3 MPa), good elongation (> 700%), high electrical conductivity (0.543 S/m), and resistance to extreme dry and −60 °C low-temperature environments. Furthermore, these eutectogel fibers demonstrate high sensitivity for monitoring joint movements and effectively detecting in vitro and in vivo signals, show casing their potential for wearable strain sensors and monitoring physiological signals.
期刊介绍:
Advanced Fiber Materials is a hybrid, peer-reviewed, international and interdisciplinary research journal which aims to publish the most important papers in fibers and fiber-related devices as well as their applications.Indexed by SCIE, EI, Scopus et al.
Publishing on fiber or fiber-related materials, technology, engineering and application.