Evaluation of a decomposition-based interpolation method for fourth-order fiber-orientation tensors: An eigensystem approach

IF 1.7 4区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Julian Karl Bauer, Constantin Krauß, Juliane Blarr, Philipp L Kinon, Luise Kärger, Thomas Böhlke
{"title":"Evaluation of a decomposition-based interpolation method for fourth-order fiber-orientation tensors: An eigensystem approach","authors":"Julian Karl Bauer, Constantin Krauß, Juliane Blarr, Philipp L Kinon, Luise Kärger, Thomas Böhlke","doi":"10.1177/10812865241241002","DOIUrl":null,"url":null,"abstract":"We propose and assess a new decomposition-based interpolation method on fourth-order fiber-orientation tensors. This method can be used to change the resolution of discretized fields of fiber-orientation tensors, e.g., obtained from flow simulations or computer tomography, which are common in the context of short- and long-fiber–reinforced composites. The proposed interpolation method separates information on structure and orientation using a parametrization which is based on tensor components and a unique eigensystem. To identify this unique eigensystem of a given fourth-order fiber-orientation tensor in the absence of material symmetry, we propose a sign convention on tensor coefficients. We explicitly discuss challenges associated with material symmetries, e.g., non-distinct eigenvalues of the second-order fiber-orientation tensor and propose algorithms to obtain a unique set of parameters combined with a minimal number of eigensystems of a given fourth-order fiber-orientation tensor. As a side product, we specify for the first time, parametrizations and admissible parameter ranges of cubic, tetragonal, and trigonal fiber-orientation tensors. Visualizations in terms of truncated Fourier series, quartic plots, and tensor glyphs are compared.","PeriodicalId":49854,"journal":{"name":"Mathematics and Mechanics of Solids","volume":"61 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics and Mechanics of Solids","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/10812865241241002","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We propose and assess a new decomposition-based interpolation method on fourth-order fiber-orientation tensors. This method can be used to change the resolution of discretized fields of fiber-orientation tensors, e.g., obtained from flow simulations or computer tomography, which are common in the context of short- and long-fiber–reinforced composites. The proposed interpolation method separates information on structure and orientation using a parametrization which is based on tensor components and a unique eigensystem. To identify this unique eigensystem of a given fourth-order fiber-orientation tensor in the absence of material symmetry, we propose a sign convention on tensor coefficients. We explicitly discuss challenges associated with material symmetries, e.g., non-distinct eigenvalues of the second-order fiber-orientation tensor and propose algorithms to obtain a unique set of parameters combined with a minimal number of eigensystems of a given fourth-order fiber-orientation tensor. As a side product, we specify for the first time, parametrizations and admissible parameter ranges of cubic, tetragonal, and trigonal fiber-orientation tensors. Visualizations in terms of truncated Fourier series, quartic plots, and tensor glyphs are compared.
评估基于分解的四阶纤维取向张量插值方法:特征系统方法
我们提出并评估了一种基于分解的四阶纤维取向张量插值新方法。这种方法可用于改变纤维取向张量离散场的分辨率,例如从流动模拟或计算机断层扫描中获得的纤维取向张量,这在短纤维和长纤维增强复合材料中很常见。所提出的插值法使用参数化方法将结构和取向信息分开,参数化方法基于张量分量和独特的特征系统。为了在没有材料对称性的情况下识别给定四阶纤维取向张量的独特特征系统,我们提出了张量系数的符号约定。我们明确讨论了与材料对称性相关的挑战,例如二阶纤维取向张量的非差异特征值,并提出了算法,以获得与给定四阶纤维取向张量的最小特征系数量相结合的唯一参数集。作为附带成果,我们首次明确了立方、四方和三方纤维取向张量的参数化和允许参数范围。比较了截断傅里叶级数、四分图和张量字形的可视化效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematics and Mechanics of Solids
Mathematics and Mechanics of Solids 工程技术-材料科学:综合
CiteScore
4.80
自引率
19.20%
发文量
159
审稿时长
1 months
期刊介绍: Mathematics and Mechanics of Solids is an international peer-reviewed journal that publishes the highest quality original innovative research in solid mechanics and materials science. The central aim of MMS is to publish original, well-written and self-contained research that elucidates the mechanical behaviour of solids with particular emphasis on mathematical principles. This journal is a member of the Committee on Publication Ethics (COPE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信