Orthogonal Bases of Exponential Functions for $$L^2(\mu )$$ on $$\mathbb {R}^d$$

Li-Xiang An, Xing-Gang He, Qian Li
{"title":"Orthogonal Bases of Exponential Functions for $$L^2(\\mu )$$ on $$\\mathbb {R}^d$$","authors":"Li-Xiang An, Xing-Gang He, Qian Li","doi":"10.1007/s12220-024-01745-z","DOIUrl":null,"url":null,"abstract":"<p>A probability measure <span>\\(\\mu \\)</span> on <span>\\({{\\mathbb {R}}}^d\\)</span> with compact support is called a spectral measure if it possesses an exponential orthonormal basis for <span>\\(L^2(\\mu )\\)</span>. In this paper, we establish general criteria for determining whether a probability measure is spectral or not. As applications of these criteria, we provide a straightforward proof for the Lebesgue measure restricted to <span>\\([0, 1]^d\\)</span> or <span>\\([0, 1]\\cup [a, a+1]\\cup [b, b+1]\\)</span> to be a spectral measure. Furthermore, we investigate the spectrality of Cantor–Moran measure </p><span>$$\\begin{aligned} \\mu _{\\{A_n, {{\\mathcal {D}}}_n\\}}= \\delta _{A_1^{-1}{{\\mathcal {D}}}_1}*\\delta _{A_1^{-1}A_2^{-1}{{\\mathcal {D}}}_2}*\\delta _{A_1^{-1}A_2^{-1}A_3^{-1}{{\\mathcal {D}}}_3}*\\cdots \\end{aligned}$$</span><p>generated by an admissible sequence <span>\\(\\{(A_n,{{\\mathcal {D}}}_n)\\}_{n=1}^{\\infty }\\)</span>. It is noteworthy that our general criteria can be applied to establish numerous known and novel results.</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01745-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A probability measure \(\mu \) on \({{\mathbb {R}}}^d\) with compact support is called a spectral measure if it possesses an exponential orthonormal basis for \(L^2(\mu )\). In this paper, we establish general criteria for determining whether a probability measure is spectral or not. As applications of these criteria, we provide a straightforward proof for the Lebesgue measure restricted to \([0, 1]^d\) or \([0, 1]\cup [a, a+1]\cup [b, b+1]\) to be a spectral measure. Furthermore, we investigate the spectrality of Cantor–Moran measure

$$\begin{aligned} \mu _{\{A_n, {{\mathcal {D}}}_n\}}= \delta _{A_1^{-1}{{\mathcal {D}}}_1}*\delta _{A_1^{-1}A_2^{-1}{{\mathcal {D}}}_2}*\delta _{A_1^{-1}A_2^{-1}A_3^{-1}{{\mathcal {D}}}_3}*\cdots \end{aligned}$$

generated by an admissible sequence \(\{(A_n,{{\mathcal {D}}}_n)\}_{n=1}^{\infty }\). It is noteworthy that our general criteria can be applied to establish numerous known and novel results.

$$\mathbb {R}^d$$ 上 $$L^2(\mu )$$ 的指数函数正交基础
如果在({\mathbb {R}}^d\) 上具有紧凑支持的概率度量\(\mu \)拥有\(L^2(\mu )\)的指数正交基础,那么这个概率度量就被称为谱度量。在本文中,我们建立了判定概率度量是否为谱度量的一般标准。作为这些标准的应用,我们提供了一个直接的证明,即限制于 \([0, 1]^d\) 或 \([0, 1]\cup [a, a+1]\cup [b, b+1]\) 的 Lebesgue 度量是一个谱度。此外,我们还研究了康托-莫兰度量 $$\begin{aligned} 的谱性。\mu _\{{A_n、{{{mathcal {D}}}_n\}}= \delta _{A_1^{-1}{{\mathcal {D}}}_1}*\delta _{A_1^{-1}A_2^{-1}{{{\mathcal {D}}}_2}*\delta _{A_1^{-1}A_2^{-1}A_3^{-1}{{mathcal {D}}_3}*cdots (end{aligned}$$由可接受序列 \(\{(A_n、{{{mathcal {D}}}_n)\}_{n=1}^{\infty }\).值得注意的是,我们的一般标准可以用来建立许多已知的和新颖的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信