The homology digraph of a preordered space

IF 0.7 4区 数学 Q2 MATHEMATICS
Catarina Faustino, Thomas Kahl
{"title":"The homology digraph of a preordered space","authors":"Catarina Faustino,&nbsp;Thomas Kahl","doi":"10.1007/s40062-024-00352-7","DOIUrl":null,"url":null,"abstract":"<div><p>This paper studies a notion of directed homology for preordered spaces, called the homology digraph. We show that the homology digraph is a directed homotopy invariant and establish variants of the main results of ordinary singular homology theory for the homology digraph. In particular, we prove a Künneth formula, which enables one to compute the homology digraph of a product of preordered spaces from the homology digraphs of the components.</p></div>","PeriodicalId":49034,"journal":{"name":"Journal of Homotopy and Related Structures","volume":"19 3","pages":"525 - 540"},"PeriodicalIF":0.7000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40062-024-00352-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Homotopy and Related Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-024-00352-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper studies a notion of directed homology for preordered spaces, called the homology digraph. We show that the homology digraph is a directed homotopy invariant and establish variants of the main results of ordinary singular homology theory for the homology digraph. In particular, we prove a Künneth formula, which enables one to compute the homology digraph of a product of preordered spaces from the homology digraphs of the components.

Abstract Image

有序空间的同源数图
本文研究有序空间的有向同调概念,即同调数字图。我们证明了同调数字图是有向同调不变式,并为同调数字图建立了普通奇异同调理论主要结果的变体。特别是,我们证明了一个库奈特公式,通过这个公式,我们可以从各部分的同调数字图计算出预序空间乘积的同调数字图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
21
审稿时长
>12 weeks
期刊介绍: Journal of Homotopy and Related Structures (JHRS) is a fully refereed international journal dealing with homotopy and related structures of mathematical and physical sciences. Journal of Homotopy and Related Structures is intended to publish papers on Homotopy in the broad sense and its related areas like Homological and homotopical algebra, K-theory, topology of manifolds, geometric and categorical structures, homology theories, topological groups and algebras, stable homotopy theory, group actions, algebraic varieties, category theory, cobordism theory, controlled topology, noncommutative geometry, motivic cohomology, differential topology, algebraic geometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信