Excellent energy storage capability in Sr0.6Ba0.4Nb2O6-based ceramics via incommensurate modulation and grain boundary reinforcement

IF 7.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Peng Zheng, Xiangting Zheng, Jiaqi Wang, Linsheng Sheng, Liang Zheng, Qiaolan Fan, Wangfeng Bai, Yang Zhang
{"title":"Excellent energy storage capability in Sr0.6Ba0.4Nb2O6-based ceramics via incommensurate modulation and grain boundary reinforcement","authors":"Peng Zheng, Xiangting Zheng, Jiaqi Wang, Linsheng Sheng, Liang Zheng, Qiaolan Fan, Wangfeng Bai, Yang Zhang","doi":"10.1016/j.apmt.2024.102326","DOIUrl":null,"url":null,"abstract":"The energy storage performances for tungsten bronze ferroelectric ceramics have always been constrained by the weak relaxor behavior and low breakdown strength. To enhance the energy storage capacity of the tungsten bronze ferroelectric ceramics, a synergistic two-step optimization strategy is proposed based on the SrBaNbO ceramic in this work, that is, enhance the relaxor behavior to generate slim hysteresis loops through the introduction of BiKTiO, and then optimize the microstructure to improve the breakdown strength by adding the sintering aid CuO. Ultimately, a remarkable comprehensive performance is achieved, characterized by a recoverable energy storage density of approximately 6.31 J/cm³ and an efficiency of about 91.8 % under 600 kV/cm. Notably, a high power density (∼178 MW/cm³) and an ultrafast discharge speed (<65 ns) are simultaneously attained, indicating excellent capacitive performance. Moreover, it is revealed that the enhanced relaxor behavior is closely related to the incommensurate modulation structure in the ceramic, while the improved breakdown strength should be ascribed to the reinforced grain boundary, which collectively contribute to the superior energy storage performances.","PeriodicalId":8066,"journal":{"name":"Applied Materials Today","volume":"69 1","pages":""},"PeriodicalIF":7.2000,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Materials Today","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.apmt.2024.102326","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The energy storage performances for tungsten bronze ferroelectric ceramics have always been constrained by the weak relaxor behavior and low breakdown strength. To enhance the energy storage capacity of the tungsten bronze ferroelectric ceramics, a synergistic two-step optimization strategy is proposed based on the SrBaNbO ceramic in this work, that is, enhance the relaxor behavior to generate slim hysteresis loops through the introduction of BiKTiO, and then optimize the microstructure to improve the breakdown strength by adding the sintering aid CuO. Ultimately, a remarkable comprehensive performance is achieved, characterized by a recoverable energy storage density of approximately 6.31 J/cm³ and an efficiency of about 91.8 % under 600 kV/cm. Notably, a high power density (∼178 MW/cm³) and an ultrafast discharge speed (<65 ns) are simultaneously attained, indicating excellent capacitive performance. Moreover, it is revealed that the enhanced relaxor behavior is closely related to the incommensurate modulation structure in the ceramic, while the improved breakdown strength should be ascribed to the reinforced grain boundary, which collectively contribute to the superior energy storage performances.
通过不对称调制和晶界强化实现基于 Sr0.6Ba0.4Nb2O6 陶瓷的卓越储能能力
钨青铜铁电陶瓷的储能性能一直受到弱弛豫行为和低击穿强度的限制。为了提高钨青铜铁电陶瓷的储能能力,本文在 SrBaNbO 陶瓷的基础上提出了两步协同优化策略,即通过引入 BiKTiO 增强弛豫行为以产生纤细的滞后环,然后通过添加烧结助剂 CuO 优化微结构以提高击穿强度。最终,该材料实现了卓越的综合性能,在 600 kV/cm 下的可恢复储能密度约为 6.31 J/cm³,效率约为 91.8%。值得注意的是,它同时实现了高功率密度(∼178 MW/cm³)和超快放电速度(<65 ns),显示出卓越的电容性能。此外,研究还发现,弛豫器行为的增强与陶瓷中的非对数调制结构密切相关,而击穿强度的提高则应归功于强化的晶界,这些因素共同促成了卓越的储能性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Materials Today
Applied Materials Today Materials Science-General Materials Science
CiteScore
14.90
自引率
3.60%
发文量
393
审稿时长
26 days
期刊介绍: Journal Name: Applied Materials Today Focus: Multi-disciplinary, rapid-publication journal Focused on cutting-edge applications of novel materials Overview: New materials discoveries have led to exciting fundamental breakthroughs. Materials research is now moving towards the translation of these scientific properties and principles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信