Compact Kähler three-folds with nef anti-canonical bundle

IF 1.3 2区 数学 Q1 MATHEMATICS
Shin-ichi Matsumura, Xiaojun Wu
{"title":"Compact Kähler three-folds with nef anti-canonical bundle","authors":"Shin-ichi Matsumura, Xiaojun Wu","doi":"10.1007/s00208-024-02934-5","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we prove that a non-projective compact Kähler three-fold with nef anti-canonical bundle is, up to a finite étale cover, one of the following: a manifold with vanishing first Chern class; the product of a K3 surface and the projective line; or a projective space bundle over a two-dimensional torus. This result extends Cao–Höring’s structure theorem for projective manifolds to compact Kähler manifolds in dimension 3. For the proof, we investigate the Minimal Model Program for compact Kähler three-folds with nef anti-canonical bundles by using the positivity of direct image sheaves, <span>\\(\\mathbb {Q}\\)</span>-conic bundles, and orbifold vector bundles.</p>","PeriodicalId":18304,"journal":{"name":"Mathematische Annalen","volume":"39 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Annalen","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00208-024-02934-5","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we prove that a non-projective compact Kähler three-fold with nef anti-canonical bundle is, up to a finite étale cover, one of the following: a manifold with vanishing first Chern class; the product of a K3 surface and the projective line; or a projective space bundle over a two-dimensional torus. This result extends Cao–Höring’s structure theorem for projective manifolds to compact Kähler manifolds in dimension 3. For the proof, we investigate the Minimal Model Program for compact Kähler three-folds with nef anti-canonical bundles by using the positivity of direct image sheaves, \(\mathbb {Q}\)-conic bundles, and orbifold vector bundles.

Abstract Image

具有 nef 反典型束的紧凑凯勒三折叠
在本文中,我们证明了一个非投影紧凑凯勒三折流形的nef反正交束,在一个有限的étale封面之前,是以下几种流形之一:第一奇恩类消失的流形;K3曲面与投影线的乘积;或二维环上的投影空间束。这一结果将曹霍林的投影流形结构定理扩展到了三维紧凑凯勒流形。为了证明这一点,我们利用直像剪、(\mathbb {Q}\)-conic bundles和orbifold vector bundles的实在性,研究了具有nef反规范束的紧凑凯勒三流形的最小模型纲领。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematische Annalen
Mathematische Annalen 数学-数学
CiteScore
2.90
自引率
7.10%
发文量
181
审稿时长
4-8 weeks
期刊介绍: Begründet 1868 durch Alfred Clebsch und Carl Neumann. Fortgeführt durch Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguignon, Wolfgang Lück und Nigel Hitchin. The journal Mathematische Annalen was founded in 1868 by Alfred Clebsch and Carl Neumann. It was continued by Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguigon, Wolfgang Lück and Nigel Hitchin. Since 1868 the name Mathematische Annalen stands for a long tradition and high quality in the publication of mathematical research articles. Mathematische Annalen is designed not as a specialized journal but covers a wide spectrum of modern mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信