The index of lattice Dirac operators and $K$-theory

Shoto Aoki, Hidenori Fukaya, Mikio Furuta, Shinichiroh Matsuo, Tetsuya Onogi, Satoshi Yamaguchi
{"title":"The index of lattice Dirac operators and $K$-theory","authors":"Shoto Aoki, Hidenori Fukaya, Mikio Furuta, Shinichiroh Matsuo, Tetsuya Onogi, Satoshi Yamaguchi","doi":"arxiv-2407.17708","DOIUrl":null,"url":null,"abstract":"We mathematically show an equality between the index of a Dirac operator on a\nflat continuum torus and the $\\eta$ invariant of the Wilson Dirac operator with\na negative mass when the lattice spacing is sufficiently small. Unlike the\nstandard approach, our formulation using $K$-theory does not require the\nGinsparg-Wilson relation or the modified chiral symmetry on the lattice. We\nprove that a one-parameter family of continuum massive Dirac operators and the\ncorresponding Wilson Dirac operators belong to the same equivalence class of\nthe $K^1$ group at a finite lattice spacing. Their indices, which are evaluated\nby the spectral flow or equivalently by the $\\eta$ invariant at finite masses,\nare proved to be equal.","PeriodicalId":501143,"journal":{"name":"arXiv - MATH - K-Theory and Homology","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.17708","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We mathematically show an equality between the index of a Dirac operator on a flat continuum torus and the $\eta$ invariant of the Wilson Dirac operator with a negative mass when the lattice spacing is sufficiently small. Unlike the standard approach, our formulation using $K$-theory does not require the Ginsparg-Wilson relation or the modified chiral symmetry on the lattice. We prove that a one-parameter family of continuum massive Dirac operators and the corresponding Wilson Dirac operators belong to the same equivalence class of the $K^1$ group at a finite lattice spacing. Their indices, which are evaluated by the spectral flow or equivalently by the $\eta$ invariant at finite masses, are proved to be equal.
晶格狄拉克算子的指数与 $K$ 理论
我们用数学方法证明,当晶格间距足够小时,平面连续环上的狄拉克算子的指数与具有负质量的威尔逊狄拉克算子的$\ea$不变式之间是相等的。与标准方法不同,我们使用 $K$ 理论的表述不需要金斯帕-威尔逊关系或晶格上的修正手性对称性。我们证明,在有限晶格间距下,连续大质量狄拉克算子的一参数族和相应的威尔逊狄拉克算子属于 $K^1$ 群的同一等价类。通过谱流或等价于有限质量的$\eta$不变式评估的它们的指数被证明是相等的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信