Potential distribution of Haloxylon ammodendron in Central Asia under climate change

IF 2.7 3区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES
Zhuo Chen, Minghao Shao, Zihao Hu, Xin Gao, Jiaqiang Lei
{"title":"Potential distribution of Haloxylon ammodendron in Central Asia under climate change","authors":"Zhuo Chen, Minghao Shao, Zihao Hu, Xin Gao, Jiaqiang Lei","doi":"10.1007/s40333-024-0061-8","DOIUrl":null,"url":null,"abstract":"<p>Understanding the spatial distribution of plant species and their dynamic changes in arid areas is crucial for addressing the challenges posed by climate change. <i>Haloxylon ammodendron</i> shelterbelts are essential for the protection of plant resources and the control of desertification in Central Asia. Thus far, the potential suitable habitats of <i>H. ammodendron</i> in Central Asia are still uncertain in the future under global climate change conditions. This study utilised the maximum entropy (MaxEnt) model to combine the current distribution data of <i>H. ammodendron</i> with its growth-related data to analyze the potential distribution pattern of <i>H. ammodendron</i> across Central Asia. The results show that there are suitable habitats of <i>H. ammodendron</i> in the Aralkum Desert, northern slopes of the Tianshan Mountains, and the upstream of the Tarim River and western edge of the Taklimakan Desert in the Tarim Basin under the current climate conditions. The period from 2021 to 2040 is projected to undergo significant changes in the suitable habitat area of <i>H. ammodendron</i> in Central Asia, with a projected 15.0% decrease in the unsuitable habitat area. Inland areas farther from the ocean, such as the Caspian Sea and Aralkum Desert, will continue to experience a decrease in the suitable habitats of <i>H. ammodendron</i>. Regions exhibiting frequent fluctuations in the habitat suitability levels are primarily found along the axis stretching from Astana to Kazakhskiy Melkosopochnik in Kazakhstan. These regions can transition into suitable habitats under varying climate conditions, requiring the implementation of appropriate human intervention measures to prevent desertification. Future climate conditions are expected to cause an eastward shift in the geometric centre of the potential suitable habitats of <i>H. ammodendron</i>, with the extent of this shift amplifying alongside more greenhouse gas emissions. This study can provide theoretical support for the spatial configuration of <i>H. ammodendron</i> shelterbelts and desertification control in Central Asia, emphasising the importance of proactive measures to adapt to climate change in the future.</p>","PeriodicalId":49169,"journal":{"name":"Journal of Arid Land","volume":"13 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Arid Land","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s40333-024-0061-8","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the spatial distribution of plant species and their dynamic changes in arid areas is crucial for addressing the challenges posed by climate change. Haloxylon ammodendron shelterbelts are essential for the protection of plant resources and the control of desertification in Central Asia. Thus far, the potential suitable habitats of H. ammodendron in Central Asia are still uncertain in the future under global climate change conditions. This study utilised the maximum entropy (MaxEnt) model to combine the current distribution data of H. ammodendron with its growth-related data to analyze the potential distribution pattern of H. ammodendron across Central Asia. The results show that there are suitable habitats of H. ammodendron in the Aralkum Desert, northern slopes of the Tianshan Mountains, and the upstream of the Tarim River and western edge of the Taklimakan Desert in the Tarim Basin under the current climate conditions. The period from 2021 to 2040 is projected to undergo significant changes in the suitable habitat area of H. ammodendron in Central Asia, with a projected 15.0% decrease in the unsuitable habitat area. Inland areas farther from the ocean, such as the Caspian Sea and Aralkum Desert, will continue to experience a decrease in the suitable habitats of H. ammodendron. Regions exhibiting frequent fluctuations in the habitat suitability levels are primarily found along the axis stretching from Astana to Kazakhskiy Melkosopochnik in Kazakhstan. These regions can transition into suitable habitats under varying climate conditions, requiring the implementation of appropriate human intervention measures to prevent desertification. Future climate conditions are expected to cause an eastward shift in the geometric centre of the potential suitable habitats of H. ammodendron, with the extent of this shift amplifying alongside more greenhouse gas emissions. This study can provide theoretical support for the spatial configuration of H. ammodendron shelterbelts and desertification control in Central Asia, emphasising the importance of proactive measures to adapt to climate change in the future.

气候变化下 Haloxylon ammodendron 在中亚的潜在分布情况
了解干旱地区植物物种的空间分布及其动态变化,对于应对气候变化带来的挑战至关重要。Haloxylon ammodendron防护林对于保护中亚地区的植物资源和控制荒漠化至关重要。迄今为止,在全球气候变化的条件下,中亚地区潜在的哈龙栖息地仍不确定。本研究利用最大熵(MaxEnt)模型,将目前的山竹分布数据与其生长相关数据相结合,分析了山竹在中亚地区的潜在分布模式。结果表明,在当前气候条件下,塔里木盆地的阿拉尔库姆沙漠、天山北坡、塔里木河上游和塔克拉玛干沙漠西缘等地都有适宜金叶女贞生长的栖息地。预计从 2021 年到 2040 年,中亚地区的 H. ammodendron 适宜栖息地面积将发生显著变化,不适宜栖息地面积预计将减少 15.0%。离海洋较远的内陆地区,如里海和阿拉库姆沙漠,其 H. ammodendron 的适宜栖息地将继续减少。栖息地适宜度波动频繁的地区主要分布在哈萨克斯坦从阿斯塔纳到哈萨克梅尔科索普奇尼克的轴线上。在不同的气候条件下,这些地区可以过渡到适宜的栖息地,因此需要采取适当的人为干预措施来防止荒漠化。预计未来的气候条件将导致 H. ammodendron 潜在适宜栖息地的几何中心东移,随着温室气体排放量的增加,这种东移的程度也会扩大。这项研究可为中亚地区羊蹄甲防护林带的空间配置和荒漠化控制提供理论支持,强调了未来采取积极措施适应气候变化的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Arid Land
Journal of Arid Land ENVIRONMENTAL SCIENCES-
CiteScore
4.70
自引率
6.70%
发文量
768
审稿时长
3.2 months
期刊介绍: The Journal of Arid Land is an international peer-reviewed journal co-sponsored by Xinjiang Institute of Ecology and Geography, the Chinese Academy of Sciences and Science Press. It aims to meet the needs of researchers, students and practitioners in sustainable development and eco-environmental management, focusing on the arid and semi-arid lands in Central Asia and the world at large. The Journal covers such topics as the dynamics of natural resources (including water, soil and land, organism and climate), the security and sustainable development of natural resources, and the environment and the ecology in arid and semi-arid lands, especially in Central Asia. Coverage also includes interactions between the atmosphere, hydrosphere, biosphere, and lithosphere, and the relationship between these natural processes and human activities. Also discussed are patterns of geography, ecology and environment; ecological improvement and environmental protection; and regional responses and feedback mechanisms to global change. The Journal of Arid Land also presents reviews, brief communications, trends and book reviews of work on these topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信