{"title":"Three families of $$C^1$$ - $$P_{2m+1}$$ Bell finite elements on triangular meshes","authors":"Xuejun Xu, Shangyou Zhang","doi":"10.1007/s11075-024-01894-w","DOIUrl":null,"url":null,"abstract":"<p>The <span>\\(C^1\\)</span>-<span>\\(P_5\\)</span> Bell finite element removes the three degrees of freedom of the edge normal derivatives of the <span>\\(C^1\\)</span>-<span>\\(P_5\\)</span> Argyris finite element. We call a <span>\\(C^1\\)</span>-<span>\\(P_k\\)</span> finite element a Bell finite element if it has no edge-degree of freedom and it contains the <span>\\(P_{k-1}\\)</span> space locally. We construct three families of odd-degree <span>\\(C^1\\)</span>-<span>\\(P_{2m+1}\\)</span> Bell finite elements on triangular meshes. Comparing to the <span>\\(C^1\\)</span>-<span>\\(P_{2m}\\)</span> Argyris finite element, the <span>\\(C^1\\)</span>-<span>\\(P_{2m+1}\\)</span> Bell finite elements produce same-order solutions with much less unknowns. For example, the second <span>\\(C^1\\)</span>-<span>\\(P_7\\)</span> Bell element (from the second family) and the <span>\\(C^1\\)</span>-<span>\\(P_6\\)</span> Argyris element have numbers of local degrees of freedom of 31 and 28 respectively, but oppositely their numbers of global degrees of freedom are 12<i>V</i> and 19<i>V</i> asymptotically, respectively, where <i>V</i> is the number of vertices in a triangular mesh. A numerical example says the new element has about 3/4 number of unknowns, but is about 5 times more accurate. Numerical computations with all three families of elements are performed.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11075-024-01894-w","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The \(C^1\)-\(P_5\) Bell finite element removes the three degrees of freedom of the edge normal derivatives of the \(C^1\)-\(P_5\) Argyris finite element. We call a \(C^1\)-\(P_k\) finite element a Bell finite element if it has no edge-degree of freedom and it contains the \(P_{k-1}\) space locally. We construct three families of odd-degree \(C^1\)-\(P_{2m+1}\) Bell finite elements on triangular meshes. Comparing to the \(C^1\)-\(P_{2m}\) Argyris finite element, the \(C^1\)-\(P_{2m+1}\) Bell finite elements produce same-order solutions with much less unknowns. For example, the second \(C^1\)-\(P_7\) Bell element (from the second family) and the \(C^1\)-\(P_6\) Argyris element have numbers of local degrees of freedom of 31 and 28 respectively, but oppositely their numbers of global degrees of freedom are 12V and 19V asymptotically, respectively, where V is the number of vertices in a triangular mesh. A numerical example says the new element has about 3/4 number of unknowns, but is about 5 times more accurate. Numerical computations with all three families of elements are performed.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.