Electrolytic Micro-Capacitors Based on Tantalum Films for High Voltage Applications

Cédric Teyssedou, Jérémie Chaillou, Isabelle Roch-Jeune, David Troadec, Marielle Huvé, Pascal Roussel, Christophe Lethien
{"title":"Electrolytic Micro-Capacitors Based on Tantalum Films for High Voltage Applications","authors":"Cédric Teyssedou, Jérémie Chaillou, Isabelle Roch-Jeune, David Troadec, Marielle Huvé, Pascal Roussel, Christophe Lethien","doi":"10.1002/admt.202400682","DOIUrl":null,"url":null,"abstract":"Electrolytic capacitors are known to be fast devices with very low time constant and able to deliver high power. This class of capacitors is then an interesting technology to power miniaturized embedded electronics for Internet of Things applications. However, the current electrolytic capacitor suffers from its bulky size that does not fit with the miniaturization. To solve this issue, a proof-of-concept consisting of miniaturizing an electrolytic capacitor based on tantalum materials to give rise to a new class of electrolytic micro-capacitors is proposed. To reach this ambitious objective, thin films (&lt;100 nm) of tantalum metal (Ta), tantalum nitride (TaN), and tantalum oxide (Ta<sub>2</sub>O<sub>5</sub>) are deposited on a Si substrate by sputtering deposition method. After a careful optimization of the deposition parameters, Ta/Ta<sub>2</sub>O<sub>5</sub> and TaN/Ta<sub>2</sub>O<sub>5</sub> electrodes (Ta and TaN ≈45 nm and Ta<sub>2</sub>O<sub>5</sub> ≈25 nm) and study their behaviors when biased at high voltage (&gt;20 Volts) in aqueous electrolyte are produced. The Ta/Ta<sub>2</sub>O<sub>5</sub> and TaN/Ta<sub>2</sub>O<sub>5</sub> interfaces when the electrode is polarized near and beyond the breakdown voltage of the dielectric layer are carefully investigated. Polarizing the electrodes beyond the breakdown voltage are shown to result in anodization-like mechanisms. In the case of the TaN/Ta<sub>2</sub>O<sub>5</sub> electrode, an N-rich porous layer grew within the Ta<sub>2</sub>O<sub>5</sub> layer as polarization increased. A comparative study on the 2 stacked layers electrodes with different compositions (Ta/Ta<sub>2</sub>O<sub>5</sub> and TaN/Ta<sub>2</sub>O<sub>5</sub>) but similar thicknesses (45/25 nm) is carried out: both electrodes show excellent capacitance retention of over 90% over 300 000 cycles. The frequency behavior of Ta/Ta<sub>2</sub>O<sub>5</sub> and TaN/Ta<sub>2</sub>O<sub>5</sub> electrodes shows that both are potential candidates in electrolytic micro-capacitors for powering miniaturized electronics.","PeriodicalId":7200,"journal":{"name":"Advanced Materials & Technologies","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials & Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/admt.202400682","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Electrolytic capacitors are known to be fast devices with very low time constant and able to deliver high power. This class of capacitors is then an interesting technology to power miniaturized embedded electronics for Internet of Things applications. However, the current electrolytic capacitor suffers from its bulky size that does not fit with the miniaturization. To solve this issue, a proof-of-concept consisting of miniaturizing an electrolytic capacitor based on tantalum materials to give rise to a new class of electrolytic micro-capacitors is proposed. To reach this ambitious objective, thin films (<100 nm) of tantalum metal (Ta), tantalum nitride (TaN), and tantalum oxide (Ta2O5) are deposited on a Si substrate by sputtering deposition method. After a careful optimization of the deposition parameters, Ta/Ta2O5 and TaN/Ta2O5 electrodes (Ta and TaN ≈45 nm and Ta2O5 ≈25 nm) and study their behaviors when biased at high voltage (>20 Volts) in aqueous electrolyte are produced. The Ta/Ta2O5 and TaN/Ta2O5 interfaces when the electrode is polarized near and beyond the breakdown voltage of the dielectric layer are carefully investigated. Polarizing the electrodes beyond the breakdown voltage are shown to result in anodization-like mechanisms. In the case of the TaN/Ta2O5 electrode, an N-rich porous layer grew within the Ta2O5 layer as polarization increased. A comparative study on the 2 stacked layers electrodes with different compositions (Ta/Ta2O5 and TaN/Ta2O5) but similar thicknesses (45/25 nm) is carried out: both electrodes show excellent capacitance retention of over 90% over 300 000 cycles. The frequency behavior of Ta/Ta2O5 and TaN/Ta2O5 electrodes shows that both are potential candidates in electrolytic micro-capacitors for powering miniaturized electronics.

Abstract Image

用于高压应用的基于钽薄膜的电解微型电容器
众所周知,电解电容器是一种时间常数极低的快速器件,能够提供高功率。因此,这类电容器是为物联网应用中的微型嵌入式电子设备供电的有趣技术。然而,目前的电解电容器体积庞大,与微型化不相适应。为了解决这个问题,我们提出了一个概念验证方案,即基于钽材料的电解电容器小型化,从而产生一类新型电解微型电容器。为了实现这一宏伟目标,我们采用溅射沉积法在硅基底上沉积了金属钽(Ta)、氮化钽(TaN)和氧化钽(Ta2O5)的薄膜(100 nm)。在仔细优化沉积参数后,制备出了 Ta/Ta2O5 和 TaN/Ta2O5 电极(Ta 和 TaN ≈45 纳米,Ta2O5 ≈25 纳米),并研究了它们在水性电解液中以高压(20 伏特)偏置时的行为。仔细研究了电极极化接近和超过介电层击穿电压时的 Ta/Ta2O5 和 TaN/Ta2O5 界面。结果表明,电极极化超过击穿电压时会产生类似阳极氧化的机制。在 TaN/Ta2O5 电极的情况下,随着极化程度的增加,Ta2O5 层内出现了富含 N 的多孔层。我们对两种不同成分(Ta/Ta2O5 和 TaN/Ta2O5)但厚度相似(45/25 nm)的叠层电极进行了比较研究:两种电极在 30 万次循环中都显示出超过 90% 的出色电容保持率。Ta/Ta2O5 和 TaN/Ta2O5 电极的频率行为表明,这两种电极都是为微型电子设备供电的电解微型电容器的潜在候选材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信