Yong Wan, Xiaona Zhang, Shuyan Lang, Ennan Ma, Yongshou Dai
{"title":"An empirical method for joint inversion of wave and wind parameters based on SAR and wave spectrometer data","authors":"Yong Wan, Xiaona Zhang, Shuyan Lang, Ennan Ma, Yongshou Dai","doi":"10.1007/s13131-024-2320-0","DOIUrl":null,"url":null,"abstract":"<p>Synthetic aperture radar (SAR) and wave spectrometers, crucial in microwave remote sensing, play an essential role in monitoring sea surface wind and wave conditions. However, they face inherent limitations in observing sea surface phenomena. SAR systems, for instance, are hindered by an azimuth cut-off phenomenon in sea surface wind field observation. Wave spectrometers, while unaffected by the azimuth cutoff phenomenon, struggle with low azimuth resolution, impacting the capture of detailed wave and wind field data. This study utilizes SAR and surface wave investigation and monitoring (SWIM) data to initially extract key feature parameters, which are then prioritized using the extreme gradient boosting (XGBoost) algorithm. The research further addresses feature collinearity through a combined analysis of feature importance and correlation, leading to the development of an inversion model for wave and wind parameters based on XGBoost. A comparative analysis of this model with ERA5 reanalysis and buoy data for of significant wave height, mean wave period, wind direction, and wind speed reveals root mean square errors of 0.212 m, 0.525 s, 27.446°, and 1.092 m/s, compared to 0.314 m, 0.888 s, 27.698°, and 1.315 m/s from buoy data, respectively. These results demonstrate the model’s effective retrieval of wave and wind parameters. Finally, the model, incorporating altimeter and scatterometer data, is evaluated against SAR/SWIM single and dual payload inversion methods across different wind speeds. This comparison highlights the model’s superior inversion accuracy over other methods.</p>","PeriodicalId":6922,"journal":{"name":"Acta Oceanologica Sinica","volume":"24 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Oceanologica Sinica","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s13131-024-2320-0","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0
Abstract
Synthetic aperture radar (SAR) and wave spectrometers, crucial in microwave remote sensing, play an essential role in monitoring sea surface wind and wave conditions. However, they face inherent limitations in observing sea surface phenomena. SAR systems, for instance, are hindered by an azimuth cut-off phenomenon in sea surface wind field observation. Wave spectrometers, while unaffected by the azimuth cutoff phenomenon, struggle with low azimuth resolution, impacting the capture of detailed wave and wind field data. This study utilizes SAR and surface wave investigation and monitoring (SWIM) data to initially extract key feature parameters, which are then prioritized using the extreme gradient boosting (XGBoost) algorithm. The research further addresses feature collinearity through a combined analysis of feature importance and correlation, leading to the development of an inversion model for wave and wind parameters based on XGBoost. A comparative analysis of this model with ERA5 reanalysis and buoy data for of significant wave height, mean wave period, wind direction, and wind speed reveals root mean square errors of 0.212 m, 0.525 s, 27.446°, and 1.092 m/s, compared to 0.314 m, 0.888 s, 27.698°, and 1.315 m/s from buoy data, respectively. These results demonstrate the model’s effective retrieval of wave and wind parameters. Finally, the model, incorporating altimeter and scatterometer data, is evaluated against SAR/SWIM single and dual payload inversion methods across different wind speeds. This comparison highlights the model’s superior inversion accuracy over other methods.
期刊介绍:
Founded in 1982, Acta Oceanologica Sinica is the official bi-monthly journal of the Chinese Society of Oceanography. It seeks to provide a forum for research papers in the field of oceanography from all over the world. In working to advance scholarly communication it has made the fast publication of high-quality research papers within this field its primary goal.
The journal encourages submissions from all branches of oceanography, including marine physics, marine chemistry, marine geology, marine biology, marine hydrology, marine meteorology, ocean engineering, marine remote sensing and marine environment sciences.
It publishes original research papers, review articles as well as research notes covering the whole spectrum of oceanography. Special issues emanating from related conferences and meetings are also considered. All papers are subject to peer review and are published online at SpringerLink.