Design, modelling and evaluation of a variable inertance bypass fluid inerter

IF 2.4 3区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Kim Thach Tran, Lei Deng, Shida Jin, Haiping Du, Hung Quoc Nguyen, Weihua Li
{"title":"Design, modelling and evaluation of a variable inertance bypass fluid inerter","authors":"Kim Thach Tran, Lei Deng, Shida Jin, Haiping Du, Hung Quoc Nguyen, Weihua Li","doi":"10.1177/1045389x241258417","DOIUrl":null,"url":null,"abstract":"The inerter emerged as a mechanical analogy to the electrical capacitor, completing the force-current analogy. It operates as a one-port, two terminal device, where the equal and opposite forces at its terminals correlate with the relative acceleration between them. This relationship is governed by ‘inertance’, a quantity that bears the unit of mass, allowing inerters to exert inertial forces. Inerters have gained considerable traction, particularly in vibration control applications. Derived from their passive counterparts, variable inertance inerters enable active control of their inertance through integrated control mechanisms. This work presents the design, modelling and evaluation of a variable inertance inerter prototype dubbed the ‘Variable Inertance Bypass Fluid Inerter’ (VIBFI). An experimental prototype of the concept was designed, constructed and tested. Simultaneously, an effort to develop and validate a mathematical model of the VIBFI is thoroughly documented. Experimental results demonstrate the controllability of performance parameters of the device, including inertance and damping coefficients, through modulating the flow restriction of the bypass channel. The mathematical models derived for the device can serve as an estimate for its performance parameters, though further refinement is required.","PeriodicalId":16121,"journal":{"name":"Journal of Intelligent Material Systems and Structures","volume":"72 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Material Systems and Structures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/1045389x241258417","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The inerter emerged as a mechanical analogy to the electrical capacitor, completing the force-current analogy. It operates as a one-port, two terminal device, where the equal and opposite forces at its terminals correlate with the relative acceleration between them. This relationship is governed by ‘inertance’, a quantity that bears the unit of mass, allowing inerters to exert inertial forces. Inerters have gained considerable traction, particularly in vibration control applications. Derived from their passive counterparts, variable inertance inerters enable active control of their inertance through integrated control mechanisms. This work presents the design, modelling and evaluation of a variable inertance inerter prototype dubbed the ‘Variable Inertance Bypass Fluid Inerter’ (VIBFI). An experimental prototype of the concept was designed, constructed and tested. Simultaneously, an effort to develop and validate a mathematical model of the VIBFI is thoroughly documented. Experimental results demonstrate the controllability of performance parameters of the device, including inertance and damping coefficients, through modulating the flow restriction of the bypass channel. The mathematical models derived for the device can serve as an estimate for its performance parameters, though further refinement is required.
可变惰性旁路流体加热器的设计、建模和评估
作为电容器的机械类比,惰性气体发生器的出现完成了力-电流的类比。它是一种单端口、双终端设备,其终端上的等反力与它们之间的相对加速度相关。这种关系受 "惰性 "支配,惰性是一个以质量为单位的量,使惰化器能够施加惯性力。惯性体已获得广泛应用,尤其是在振动控制应用中。可变惰性阻尼器源于被动阻尼器,可通过集成控制机制对其惰性进行主动控制。本研究介绍了一种被称为 "可变惰性旁通流体惰性器"(VIBFI)的可变惰性惰性器原型的设计、建模和评估。我们设计、建造并测试了这一概念的实验原型。同时,还详细记录了开发和验证 VIBFI 数学模型的工作。实验结果表明,通过调节旁路通道的流量限制,可以控制该装置的性能参数,包括惰性和阻尼系数。为该装置得出的数学模型可以作为其性能参数的估算,但还需要进一步完善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Intelligent Material Systems and Structures
Journal of Intelligent Material Systems and Structures 工程技术-材料科学:综合
CiteScore
5.40
自引率
11.10%
发文量
126
审稿时长
4.7 months
期刊介绍: The Journal of Intelligent Materials Systems and Structures is an international peer-reviewed journal that publishes the highest quality original research reporting the results of experimental or theoretical work on any aspect of intelligent materials systems and/or structures research also called smart structure, smart materials, active materials, adaptive structures and adaptive materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信