Iris: a multi-constraint graphic layout generation system

IF 2.7 3区 工程技术 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Liuqing Chen, Qianzhi Jing, Yixin Tsang, Tingting Zhou
{"title":"Iris: a multi-constraint graphic layout generation system","authors":"Liuqing Chen, Qianzhi Jing, Yixin Tsang, Tingting Zhou","doi":"10.1631/fitee.2300312","DOIUrl":null,"url":null,"abstract":"<p>In graphic design, layout is a result of the interaction between the design elements in the foreground and background images. However, prevalent research focuses on enhancing the quality of layout generation algorithms, overlooking the interaction and controllability that are essential for designers when applying these methods in real-world situations. This paper proposes a user-centered layout design system, Iris, which provides designers with an interactive environment to expedite the workflow, and this environment encompasses the features of user-constraint specification, layout generation, custom editing, and final rendering. To satisfy the multiple constraints specified by designers, we introduce a novel generation model, multi-constraint LayoutVQ-VAE, for advancing layout generation under intra- and inter-domain constraints. Qualitative and quantitative experiments on our proposed model indicate that it outperforms or is comparable to prevalent state-of-the-art models in multiple aspects. User studies on Iris further demonstrate that the system significantly enhances design efficiency while achieving human-like layout designs.</p>","PeriodicalId":12608,"journal":{"name":"Frontiers of Information Technology & Electronic Engineering","volume":"50 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Information Technology & Electronic Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1631/fitee.2300312","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In graphic design, layout is a result of the interaction between the design elements in the foreground and background images. However, prevalent research focuses on enhancing the quality of layout generation algorithms, overlooking the interaction and controllability that are essential for designers when applying these methods in real-world situations. This paper proposes a user-centered layout design system, Iris, which provides designers with an interactive environment to expedite the workflow, and this environment encompasses the features of user-constraint specification, layout generation, custom editing, and final rendering. To satisfy the multiple constraints specified by designers, we introduce a novel generation model, multi-constraint LayoutVQ-VAE, for advancing layout generation under intra- and inter-domain constraints. Qualitative and quantitative experiments on our proposed model indicate that it outperforms or is comparable to prevalent state-of-the-art models in multiple aspects. User studies on Iris further demonstrate that the system significantly enhances design efficiency while achieving human-like layout designs.

Iris:多约束图形布局生成系统
在平面设计中,布局是前景和背景图像中设计元素相互作用的结果。然而,目前的研究主要集中在提高布局生成算法的质量上,忽略了设计师在实际应用这些方法时所必需的交互性和可控性。本文提出了一个以用户为中心的布局设计系统 Iris,它为设计者提供了一个交互式环境,以加快工作流程,该环境包括用户约束规范、布局生成、自定义编辑和最终渲染等功能。为了满足设计者指定的多重约束,我们引入了一种新颖的生成模型--多约束 LayoutVQ-VAE,用于推进域内和域间约束下的布局生成。对我们提出的模型进行的定性和定量实验表明,该模型在多个方面都优于或媲美目前最先进的模型。对 Iris 的用户研究进一步表明,该系统在实现类似人类布局设计的同时,还显著提高了设计效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers of Information Technology & Electronic Engineering
Frontiers of Information Technology & Electronic Engineering COMPUTER SCIENCE, INFORMATION SYSTEMSCOMPU-COMPUTER SCIENCE, SOFTWARE ENGINEERING
CiteScore
6.00
自引率
10.00%
发文量
1372
期刊介绍: Frontiers of Information Technology & Electronic Engineering (ISSN 2095-9184, monthly), formerly known as Journal of Zhejiang University SCIENCE C (Computers & Electronics) (2010-2014), is an international peer-reviewed journal launched by Chinese Academy of Engineering (CAE) and Zhejiang University, co-published by Springer & Zhejiang University Press. FITEE is aimed to publish the latest implementation of applications, principles, and algorithms in the broad area of Electrical and Electronic Engineering, including but not limited to Computer Science, Information Sciences, Control, Automation, Telecommunications. There are different types of articles for your choice, including research articles, review articles, science letters, perspective, new technical notes and methods, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信