{"title":"Lithium Isotopic Fractionation in Minerals from Pegmatites: Perspective of Crystal Chemistry","authors":"Shan-Ke Liu, Ben-Xun Su","doi":"10.1007/s12583-024-0037-9","DOIUrl":null,"url":null,"abstract":"<p>Lack of information regarding lithium (Li) crystal chemistry in numerous minerals, especially those containing trace amounts of Li (ranging from a few to tens of ppm), limits our understanding of Li isotopic fractionation in pegmatites. In this study, we examined the Li isotopic composition and Li content in various Li-poor (e.g., quartz or feldspar) together with Li-rich (sopdumene or lepidolite) mineral phases within granitic pegmatites. We compiled a comprehensive dataset, encompassing a broad spectrum of Li contents (ranging from a few to tens of thousands of ppm) and Li isotopic values (−8‰ to 41‰). The minerals exhibit distinct Li isotopic signatures. Specifically, elbaite and beryl show the highest values, while biotite displays a negative average. Compared to individual minerals, whole rocks demonstrate lower Li isotopic values, with pegmatites exhibiting the highest and non-granitic pegmatite wall rocks showing the lowest. Our study also uncovers a clear “V”. shape relationship between Li isotopic values and logarithm of Li contents, with different mineral groups occupying specific regions within this shape. Furthermore, a significant correlation was observed between average Li isotopic values and Li-O (OH, F) bond lengths in various minerals. These discoveries underscore the crucial role of crystal chemistry in shaping the Li isotopic behavior in pegmatites from a statistical perspective.</p>","PeriodicalId":15607,"journal":{"name":"Journal of Earth Science","volume":"15 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Earth Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s12583-024-0037-9","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Lack of information regarding lithium (Li) crystal chemistry in numerous minerals, especially those containing trace amounts of Li (ranging from a few to tens of ppm), limits our understanding of Li isotopic fractionation in pegmatites. In this study, we examined the Li isotopic composition and Li content in various Li-poor (e.g., quartz or feldspar) together with Li-rich (sopdumene or lepidolite) mineral phases within granitic pegmatites. We compiled a comprehensive dataset, encompassing a broad spectrum of Li contents (ranging from a few to tens of thousands of ppm) and Li isotopic values (−8‰ to 41‰). The minerals exhibit distinct Li isotopic signatures. Specifically, elbaite and beryl show the highest values, while biotite displays a negative average. Compared to individual minerals, whole rocks demonstrate lower Li isotopic values, with pegmatites exhibiting the highest and non-granitic pegmatite wall rocks showing the lowest. Our study also uncovers a clear “V”. shape relationship between Li isotopic values and logarithm of Li contents, with different mineral groups occupying specific regions within this shape. Furthermore, a significant correlation was observed between average Li isotopic values and Li-O (OH, F) bond lengths in various minerals. These discoveries underscore the crucial role of crystal chemistry in shaping the Li isotopic behavior in pegmatites from a statistical perspective.
期刊介绍:
Journal of Earth Science (previously known as Journal of China University of Geosciences), issued bimonthly through China University of Geosciences, covers all branches of geology and related technology in the exploration and utilization of earth resources. Founded in 1990 as the Journal of China University of Geosciences, this publication is expanding its breadth of coverage to an international scope. Coverage includes such topics as geology, petrology, mineralogy, ore deposit geology, tectonics, paleontology, stratigraphy, sedimentology, geochemistry, geophysics and environmental sciences.
Articles published in recent issues include Tectonics in the Northwestern West Philippine Basin; Creep Damage Characteristics of Soft Rock under Disturbance Loads; Simplicial Indicator Kriging; Tephra Discovered in High Resolution Peat Sediment and Its Indication to Climatic Event.
The journal offers discussion of new theories, methods and discoveries; reports on recent achievements in the geosciences; and timely reviews of selected subjects.