The Sobolev Wavefront Set of the Causal Propagator in Finite Regularity

IF 1.4 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
Yafet E. Sanchez Sanchez, Elmar Schrohe
{"title":"The Sobolev Wavefront Set of the Causal Propagator in Finite Regularity","authors":"Yafet E. Sanchez Sanchez,&nbsp;Elmar Schrohe","doi":"10.1007/s00023-024-01462-x","DOIUrl":null,"url":null,"abstract":"<div><p>Given a globally hyperbolic spacetime <span>\\(M={\\mathbb {R}}\\times \\Sigma \\)</span> of dimension four and regularity <span>\\(C^\\tau \\)</span>, we estimate the Sobolev wavefront set of the causal propagator <span>\\(K_G\\)</span> of the Klein–Gordon operator. In the smooth case, the propagator satisfies <span>\\(WF'(K_G)=C\\)</span>, where <span>\\(C\\subset T^*(M\\times M)\\)</span> consists of those points <span>\\((\\tilde{x},\\tilde{\\xi },\\tilde{y},\\tilde{\\eta })\\)</span> such that <span>\\(\\tilde{\\xi },\\tilde{\\eta }\\)</span> are cotangent to a null geodesic <span>\\(\\gamma \\)</span> at <span>\\(\\tilde{x}\\)</span> resp. <span>\\(\\tilde{y}\\)</span> and parallel transports of each other along <span>\\(\\gamma \\)</span>. We show that for <span>\\(\\tau &gt;2\\)</span>, </p><div><div><span>$$\\begin{aligned} WF'^{-2+\\tau -{\\epsilon }}(K_G)\\subset C \\end{aligned}$$</span></div></div><p>for every <span>\\({\\epsilon }&gt;0\\)</span>. Furthermore, in regularity <span>\\(C^{\\tau +2}\\)</span> with <span>\\(\\tau &gt;2\\)</span>, </p><div><div><span>$$\\begin{aligned} C\\subset WF'^{-\\frac{1}{2}}(K_G)\\subset WF'^{\\tau -\\epsilon }(K_G)\\subset C \\end{aligned}$$</span></div></div><p>holds for <span>\\(0&lt;\\epsilon &lt;\\tau +\\frac{1}{2}\\)</span>. In the ultrastatic case with <span>\\(\\Sigma \\)</span> compact, we show <span>\\(WF'^{-\\frac{3}{2}+\\tau -\\epsilon }(K_G)\\subset C\\)</span> for <span>\\(\\epsilon &gt;0\\)</span> and <span>\\(\\tau &gt;2\\)</span> and <span>\\(WF'^{-\\frac{3}{2}+\\tau -\\epsilon }(K_G)= C\\)</span> for <span>\\(\\tau &gt;3\\)</span> and <span>\\(\\epsilon &lt;\\tau -3\\)</span>. Moreover, we show that the global regularity of the propagator <span>\\(K_G\\)</span> is <span>\\(H^{-\\frac{1}{2}-\\epsilon }_{loc}(M\\times M)\\)</span> as in the smooth case.</p></div>","PeriodicalId":463,"journal":{"name":"Annales Henri Poincaré","volume":"26 4","pages":"1375 - 1406"},"PeriodicalIF":1.4000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00023-024-01462-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Henri Poincaré","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00023-024-01462-x","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Given a globally hyperbolic spacetime \(M={\mathbb {R}}\times \Sigma \) of dimension four and regularity \(C^\tau \), we estimate the Sobolev wavefront set of the causal propagator \(K_G\) of the Klein–Gordon operator. In the smooth case, the propagator satisfies \(WF'(K_G)=C\), where \(C\subset T^*(M\times M)\) consists of those points \((\tilde{x},\tilde{\xi },\tilde{y},\tilde{\eta })\) such that \(\tilde{\xi },\tilde{\eta }\) are cotangent to a null geodesic \(\gamma \) at \(\tilde{x}\) resp. \(\tilde{y}\) and parallel transports of each other along \(\gamma \). We show that for \(\tau >2\),

$$\begin{aligned} WF'^{-2+\tau -{\epsilon }}(K_G)\subset C \end{aligned}$$

for every \({\epsilon }>0\). Furthermore, in regularity \(C^{\tau +2}\) with \(\tau >2\),

$$\begin{aligned} C\subset WF'^{-\frac{1}{2}}(K_G)\subset WF'^{\tau -\epsilon }(K_G)\subset C \end{aligned}$$

holds for \(0<\epsilon <\tau +\frac{1}{2}\). In the ultrastatic case with \(\Sigma \) compact, we show \(WF'^{-\frac{3}{2}+\tau -\epsilon }(K_G)\subset C\) for \(\epsilon >0\) and \(\tau >2\) and \(WF'^{-\frac{3}{2}+\tau -\epsilon }(K_G)= C\) for \(\tau >3\) and \(\epsilon <\tau -3\). Moreover, we show that the global regularity of the propagator \(K_G\) is \(H^{-\frac{1}{2}-\epsilon }_{loc}(M\times M)\) as in the smooth case.

Abstract Image

有限正则因果传播者的索波列夫波前集
给定一个维数为四且正则性为(C^\tau \)的全局双曲时空(M={/mathbb {R}}\times \Sigma \),我们估计克莱因-戈登算子的因果传播者\(K_G\)的索波列夫波前集(Sobolev wavefront set)。在光滑情况下,传播者满足(WF'(K_G)=C),其中(C子集T^*(M\times M))由那些点((\tilde{x},\tilde{\xi }、\這樣的( ( (tilde{x},tilde{xi}, (tilde{y},tilde{eta}))在 ( ( (tilde{x}))rece.\沿 \(\gamma \)互相平行传输。我们证明,对于 (tau >2), $$\begin{aligned}WF'^{-2+\tau -{\epsilon }}(K_G)\subset C \end{aligned}$$对于每一个({\epsilon }>0\)。此外,在正则性(C^{\tau +2})与(\tau >2)中,$$\begin{aligned}$$C'subset WF's。Csubset WF'^{-\frac{1}{2}}(K_G)\subset WF'^{\tau -\epsilon }(K_G)\subset C\end{aligned}$$holds for\(0<\epsilon <\tau +\frac{1}{2}\).在 \(\Sigma\) 紧凑的超静态情况下,我们证明了 \(WF'^{-\frac{3}{2}+\tau -\epsilon }(K_G)\subset C\) 对于 \(\epsilon >;0) and\(\tau >2\) and\(WF'^{-\frac{3}{2}+\tau -\epsilon }(K_G)= C\) for \(\tau >3\) and\(\epsilon <\tau -3\)。此外,我们还证明了传播者 \(K_G\) 的全局正则性是 \(H^{-\frac{1}{2}-\epsilon }_{loc}(M\times M)\),就像在光滑情况下一样。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annales Henri Poincaré
Annales Henri Poincaré 物理-物理:粒子与场物理
CiteScore
3.00
自引率
6.70%
发文量
108
审稿时长
6-12 weeks
期刊介绍: The two journals Annales de l''Institut Henri Poincaré, physique théorique and Helvetica Physical Acta merged into a single new journal under the name Annales Henri Poincaré - A Journal of Theoretical and Mathematical Physics edited jointly by the Institut Henri Poincaré and by the Swiss Physical Society. The goal of the journal is to serve the international scientific community in theoretical and mathematical physics by collecting and publishing original research papers meeting the highest professional standards in the field. The emphasis will be on analytical theoretical and mathematical physics in a broad sense.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信