{"title":"Convex Polytopes, Dihedral Angles, Mean Curvature and Scalar Curvature","authors":"Misha Gromov","doi":"10.1007/s00454-024-00657-7","DOIUrl":null,"url":null,"abstract":"<p>We approximate boundaries of convex polytopes <span>\\(X\\subset {\\mathbb {R}}^n\\)</span> by smooth hypersurfaces <span>\\(Y=Y_\\varepsilon \\)</span> with <i>positive mean curvatures</i> and, by using basic geometric relations between the scalar curvatures of Riemannian manifolds and the mean curvatures of their boundaries, establish <i>lower bound on the dihedral angles</i> of <i>X</i>.</p>","PeriodicalId":50574,"journal":{"name":"Discrete & Computational Geometry","volume":"37 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Computational Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-024-00657-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
We approximate boundaries of convex polytopes \(X\subset {\mathbb {R}}^n\) by smooth hypersurfaces \(Y=Y_\varepsilon \) with positive mean curvatures and, by using basic geometric relations between the scalar curvatures of Riemannian manifolds and the mean curvatures of their boundaries, establish lower bound on the dihedral angles of X.
期刊介绍:
Discrete & Computational Geometry (DCG) is an international journal of mathematics and computer science, covering a broad range of topics in which geometry plays a fundamental role. It publishes papers on such topics as configurations and arrangements, spatial subdivision, packing, covering, and tiling, geometric complexity, polytopes, point location, geometric probability, geometric range searching, combinatorial and computational topology, probabilistic techniques in computational geometry, geometric graphs, geometry of numbers, and motion planning.