Many Equiprojective Polytopes

IF 0.6 3区 数学 Q4 COMPUTER SCIENCE, THEORY & METHODS
Théophile Buffière, Lionel Pournin
{"title":"Many Equiprojective Polytopes","authors":"Théophile Buffière, Lionel Pournin","doi":"10.1007/s00454-024-00681-7","DOIUrl":null,"url":null,"abstract":"<p>A 3-dimensional polytope <i>P</i> is <i>k</i>-equiprojective when the projection of <i>P</i> along any line that is not parallel to a facet of <i>P</i> is a polygon with <i>k</i> vertices. In 1968, Geoffrey Shephard asked for a description of all equiprojective polytopes. It has been shown recently that the number of combinatorial types of <i>k</i>-equiprojective polytopes is at least linear as a function of <i>k</i>. Here, it is shown that there are at least <span>\\(k^{3k/2+o(k)}\\)</span> such combinatorial types as <i>k</i> goes to infinity. This relies on the Goodman–Pollack lower bound on the number of order types of point configurations and on new constructions of equiprojective polytopes via Minkowski sums.</p>","PeriodicalId":50574,"journal":{"name":"Discrete & Computational Geometry","volume":"22 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Computational Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-024-00681-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

A 3-dimensional polytope P is k-equiprojective when the projection of P along any line that is not parallel to a facet of P is a polygon with k vertices. In 1968, Geoffrey Shephard asked for a description of all equiprojective polytopes. It has been shown recently that the number of combinatorial types of k-equiprojective polytopes is at least linear as a function of k. Here, it is shown that there are at least \(k^{3k/2+o(k)}\) such combinatorial types as k goes to infinity. This relies on the Goodman–Pollack lower bound on the number of order types of point configurations and on new constructions of equiprojective polytopes via Minkowski sums.

Abstract Image

许多等射多边形
当一个三维多边形 P 沿着与 P 的一个面不平行的任何线的投影是一个有 k 个顶点的多边形时,这个多边形 P 是 k 等投影的。1968 年,杰弗里-谢泼德(Geoffrey Shephard)要求描述所有等投影多面体。最近的研究表明,k 等投影多边形的组合类型数量至少是 k 的线性函数。这里的研究表明,当 k 变为无穷大时,至少有 \(k^{3k/2+o(k)}\) 个这样的组合类型。这依赖于古德曼-波拉克(Goodman-Pollack)关于点配置阶类型数量的下限,以及通过闵科夫斯基和对等投影多面体的新构造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete & Computational Geometry
Discrete & Computational Geometry 数学-计算机:理论方法
CiteScore
1.80
自引率
12.50%
发文量
99
审稿时长
6-12 weeks
期刊介绍: Discrete & Computational Geometry (DCG) is an international journal of mathematics and computer science, covering a broad range of topics in which geometry plays a fundamental role. It publishes papers on such topics as configurations and arrangements, spatial subdivision, packing, covering, and tiling, geometric complexity, polytopes, point location, geometric probability, geometric range searching, combinatorial and computational topology, probabilistic techniques in computational geometry, geometric graphs, geometry of numbers, and motion planning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信