The Gradient Flow for Entropy on Closed Planar Curves

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Lachlann O’Donnell, Glen Wheeler, Valentina-Mira Wheeler
{"title":"The Gradient Flow for Entropy on Closed Planar Curves","authors":"Lachlann O’Donnell,&nbsp;Glen Wheeler,&nbsp;Valentina-Mira Wheeler","doi":"10.1007/s00205-024-02014-7","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we consider the steepest descent <span>\\(L^2\\)</span>-gradient flow of the entropy functional. The flow expands convex curves, with the radius of an initial circle growing like the square root of time. Our main result is that, for any initial curve (either immersed locally strictly convex of class <span>\\(C^2\\)</span> or embedded of class <span>\\(W^{2,2}\\)</span> bounding a strictly convex body), the flow converges smoothly to a round expanding multiply-covered circle.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00205-024-02014-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-024-02014-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we consider the steepest descent \(L^2\)-gradient flow of the entropy functional. The flow expands convex curves, with the radius of an initial circle growing like the square root of time. Our main result is that, for any initial curve (either immersed locally strictly convex of class \(C^2\) or embedded of class \(W^{2,2}\) bounding a strictly convex body), the flow converges smoothly to a round expanding multiply-covered circle.

封闭平面曲线上的熵梯度流
在本文中,我们考虑了熵函数的陡降(L^2)梯度流。该流扩展凸曲线,初始圆的半径像时间的平方根一样增长。我们的主要结果是,对于任何初始曲线(无论是浸入类 \(C^2\)的局部严格凸曲线还是嵌入类 \(W^{2,2}\)的以严格凸体为边界的曲线),熵流都会平滑地收敛到一个不断扩张的多重覆盖圆。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信