Flow views and infinite interval exchange transformations for recognizable substitutions

IF 0.5 4区 数学 Q3 MATHEMATICS
Natalie Priebe Frank
{"title":"Flow views and infinite interval exchange transformations for recognizable substitutions","authors":"Natalie Priebe Frank","doi":"10.1016/j.indag.2024.07.004","DOIUrl":null,"url":null,"abstract":"<div><p>A flow view is the graph of a measurable conjugacy <span><math><mi>Φ</mi></math></span> between a substitution or S-adic subshift <span><math><mrow><mo>(</mo><mi>Σ</mi><mo>,</mo><mi>σ</mi><mo>,</mo><mi>μ</mi><mo>)</mo></mrow></math></span> and an exchange of infinitely many intervals in <span><math><mrow><mo>(</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mo>,</mo><mi>F</mi><mo>,</mo><mi>m</mi><mo>)</mo></mrow></math></span>, where <span><math><mi>m</mi></math></span><span> is Lebesgue measure. A natural refining sequence of partitions of </span><span><math><mi>Σ</mi></math></span> is transferred to <span><math><mrow><mo>(</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mo>,</mo><mi>m</mi><mo>)</mo></mrow></math></span> using a canonical addressing scheme, a fixed dual substitution <span><math><msub><mrow><mi>S</mi></mrow><mrow><mo>∗</mo></mrow></msub></math></span>, and a shift-invariant probability measure <span><math><mi>μ</mi></math></span>. On the flow view, <span><math><mrow><mi>τ</mi><mo>∈</mo><mi>Σ</mi></mrow></math></span> is shown horizontally at a height of <span><math><mrow><mi>Φ</mi><mrow><mo>(</mo><mi>τ</mi><mo>)</mo></mrow></mrow></math></span><span> using colored unit intervals to represent the letters.</span></p><p>The infinite interval exchange transformation <span><math><mi>F</mi></math></span> is well approximated by exchanges of finitely many intervals, making numeric and graphic methods possible. We prove that in certain cases a choice of dual substitution guarantees that <span><math><mi>Φ</mi></math></span> is self-similar. We discuss why the spectral type of <span><math><mrow><mi>Φ</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>Σ</mi><mo>,</mo><mi>μ</mi><mo>)</mo></mrow><mo>,</mo></mrow></math></span> is of particular interest. As an example of utility, some spectral results for constant-length substitutions are included.</p></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"35 5","pages":"Pages 1075-1103"},"PeriodicalIF":0.5000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae-New Series","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S001935772400082X","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A flow view is the graph of a measurable conjugacy Φ between a substitution or S-adic subshift (Σ,σ,μ) and an exchange of infinitely many intervals in ([0,1],F,m), where m is Lebesgue measure. A natural refining sequence of partitions of Σ is transferred to ([0,1],m) using a canonical addressing scheme, a fixed dual substitution S, and a shift-invariant probability measure μ. On the flow view, τΣ is shown horizontally at a height of Φ(τ) using colored unit intervals to represent the letters.

The infinite interval exchange transformation F is well approximated by exchanges of finitely many intervals, making numeric and graphic methods possible. We prove that in certain cases a choice of dual substitution guarantees that Φ is self-similar. We discuss why the spectral type of ΦL2(Σ,μ), is of particular interest. As an example of utility, some spectral results for constant-length substitutions are included.

可识别替换的流动视图和无限区间交换变换
流视图是替换或 S-adic 子移位与无穷多个区间的交换之间的可测共轭图,其中是 Lebesgue 度量。使用一个典型寻址方案、一个固定的对偶置换 ,以及一个移位不变的概率度量,可以将 的分区的一个自然精炼序列转移到 。在流动视图中,用彩色单位间隔表示字母,水平高度为 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
16.70%
发文量
74
审稿时长
79 days
期刊介绍: Indagationes Mathematicae is a peer-reviewed international journal for the Mathematical Sciences of the Royal Dutch Mathematical Society. The journal aims at the publication of original mathematical research papers of high quality and of interest to a large segment of the mathematics community. The journal also welcomes the submission of review papers of high quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信