{"title":"On the continuous probability distribution attribute weight of belief rule base model","authors":"Yunyi Zhang, Hongbin Huang, Ye Du, Wei He","doi":"10.1007/s11227-024-06363-8","DOIUrl":null,"url":null,"abstract":"<p>In current researches on belief rule base (BRB), input parameters are tended to be expressed in the form of quantitative values through expert knowledge combined with optimization methods. A singular quantitative value fails to capture the statistical properties, leading to irrational outcomes. Therefore, an attempt on attribute weights is made in this paper, and a new model with probability distribution attribute weights (pdw) called BRB-pdw is proposed. The combination of two attributes is in detail discussed, where attribute weights are described as random variables with specific probability distribution. To characterize the output of probability distribution attribute weight, a new concept of expectation of activation weight is proposed. In addition, the BRB-pdw is extended to multiple attributes to demonstrate its universality. Furthermore, fundamental properties and characteristics of the BRB-pdw are further validated by rigorous mathematical derivation. Finally, practicability of the BRB-pdw is validated with NASA lithium battery open dataset, and experiments show that the BRB-pdw model is more robust while maintaining precision.</p>","PeriodicalId":501596,"journal":{"name":"The Journal of Supercomputing","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Supercomputing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11227-024-06363-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In current researches on belief rule base (BRB), input parameters are tended to be expressed in the form of quantitative values through expert knowledge combined with optimization methods. A singular quantitative value fails to capture the statistical properties, leading to irrational outcomes. Therefore, an attempt on attribute weights is made in this paper, and a new model with probability distribution attribute weights (pdw) called BRB-pdw is proposed. The combination of two attributes is in detail discussed, where attribute weights are described as random variables with specific probability distribution. To characterize the output of probability distribution attribute weight, a new concept of expectation of activation weight is proposed. In addition, the BRB-pdw is extended to multiple attributes to demonstrate its universality. Furthermore, fundamental properties and characteristics of the BRB-pdw are further validated by rigorous mathematical derivation. Finally, practicability of the BRB-pdw is validated with NASA lithium battery open dataset, and experiments show that the BRB-pdw model is more robust while maintaining precision.