{"title":"Metamaterial-based transmit and receive antennas for wireless image transfer at 5.8 GHz","authors":"Rashmi Borah, Neha Pal, Arjesh Jha, Shailesh Jayant, Gobind Rai, Amit Birwal, Kamlesh Patel","doi":"10.1515/freq-2024-0071","DOIUrl":null,"url":null,"abstract":"In this study, the performance of two metamaterial-based antennas – transmit antennas with a double negative index (DNI) and receive antenna with an epsilon near zero (ENZ) material is described for image transfer application. These three-layered antennas are simulated and fabricated on Roger RO3003 substrate. The transmit antenna achieves a gain of 5.5 dBi and a bandwidth of 3.9 GHz, while the receive antenna reports a gain of 11.4 dBi with a 3-dB angular beam width of 32.5° at 5.8 GHz. These antennas are employed with a commercially available transmitter with a camera and receiver. Few images are captured at various distances and simultaneously transferred to the receiver. The images transferred wirelessly are found better in terms of the image quality score obtained using the Blind/Reference less Image Spatial Quality Evaluator (BRISQUE) method, compared to those transferred using the standard dipole antennas. So, the proposed metamaterial-based antennas are suitable for wireless image/video transfer applications.","PeriodicalId":55143,"journal":{"name":"Frequenz","volume":"14 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frequenz","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/freq-2024-0071","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, the performance of two metamaterial-based antennas – transmit antennas with a double negative index (DNI) and receive antenna with an epsilon near zero (ENZ) material is described for image transfer application. These three-layered antennas are simulated and fabricated on Roger RO3003 substrate. The transmit antenna achieves a gain of 5.5 dBi and a bandwidth of 3.9 GHz, while the receive antenna reports a gain of 11.4 dBi with a 3-dB angular beam width of 32.5° at 5.8 GHz. These antennas are employed with a commercially available transmitter with a camera and receiver. Few images are captured at various distances and simultaneously transferred to the receiver. The images transferred wirelessly are found better in terms of the image quality score obtained using the Blind/Reference less Image Spatial Quality Evaluator (BRISQUE) method, compared to those transferred using the standard dipole antennas. So, the proposed metamaterial-based antennas are suitable for wireless image/video transfer applications.
期刊介绍:
Frequenz is one of the leading scientific and technological journals covering all aspects of RF-, Microwave-, and THz-Engineering. It is a peer-reviewed, bi-monthly published journal.
Frequenz was first published in 1947 with a circulation of 7000 copies, focusing on telecommunications. Today, the major objective of Frequenz is to highlight current research activities and development efforts in RF-, Microwave-, and THz-Engineering throughout a wide frequency spectrum ranging from radio via microwave up to THz frequencies.
RF-, Microwave-, and THz-Engineering is a very active area of Research & Development as well as of Applications in a wide variety of fields. It has been the key to enabling technologies responsible for phenomenal growth of satellite broadcasting, wireless communications, satellite and terrestrial mobile communications and navigation, high-speed THz communication systems. It will open up new technologies in communications, radar, remote sensing and imaging, in identification and localization as well as in sensors, e.g. for wireless industrial process and environmental monitoring as well as for biomedical sensing.