Ultrasounds Induced Microstructure Transition and Improved Mechanical Property of Directionally Solidified Ternary Cu–Al–Ni Alloy

Y. J. Hu, J. Y. Wang, W. Zhai, B. Wei
{"title":"Ultrasounds Induced Microstructure Transition and Improved Mechanical Property of Directionally Solidified Ternary Cu–Al–Ni Alloy","authors":"Y. J. Hu, J. Y. Wang, W. Zhai, B. Wei","doi":"10.1007/s11663-024-03213-z","DOIUrl":null,"url":null,"abstract":"<p>Two ultrasonic modes, <i>i.e.</i>, continuous and pulsed ultrasounds, were introduced into the directional solidification process of Cu<sub>68.3</sub>Al<sub>27.6</sub>Ni<sub>4.1</sub> alloy. A columnar-to-equiaxed structure transition occurred to primary <i>β</i>(Cu<sub>3</sub>Al) phase within continuous ultrasonic field, which was accompanied with a grain size reduction by 7.5 times. Under pulsed ultrasound, <i>β</i> phase maintained the fine columnar structures with a similar grain size. In the former case, numerous <i>β</i> phase nucleation sites formed ahead of solid/liquid (S/L) interface because of the large local undercoolings induced by transient cavitation. Meanwhile, intensive acoustic streaming suppressed the liquid temperature gradient from 120 to 85 K/cm, which interrupted the solute transportation along heat flow direction and resulted in equiaxed microstructures. Under the intermittent ultrasonic action in the latter case, fewer nucleation sites were generated near S/L interface but small columnar <i>β</i> grains were split from the original ones under stable cavitation. Since no steady convection was driven, the liquid temperature gradient of 110 K/cm remained almost constant, making those grains grow into refined columnar structures. Under the action of pulsed ultrasound, the yield strength was enhanced by a factor of 1.5 because of grain refinement strengthening, together with 94 pct shape recovery rate due to columnar grain structures.</p>","PeriodicalId":18613,"journal":{"name":"Metallurgical and Materials Transactions B","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgical and Materials Transactions B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11663-024-03213-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Two ultrasonic modes, i.e., continuous and pulsed ultrasounds, were introduced into the directional solidification process of Cu68.3Al27.6Ni4.1 alloy. A columnar-to-equiaxed structure transition occurred to primary β(Cu3Al) phase within continuous ultrasonic field, which was accompanied with a grain size reduction by 7.5 times. Under pulsed ultrasound, β phase maintained the fine columnar structures with a similar grain size. In the former case, numerous β phase nucleation sites formed ahead of solid/liquid (S/L) interface because of the large local undercoolings induced by transient cavitation. Meanwhile, intensive acoustic streaming suppressed the liquid temperature gradient from 120 to 85 K/cm, which interrupted the solute transportation along heat flow direction and resulted in equiaxed microstructures. Under the intermittent ultrasonic action in the latter case, fewer nucleation sites were generated near S/L interface but small columnar β grains were split from the original ones under stable cavitation. Since no steady convection was driven, the liquid temperature gradient of 110 K/cm remained almost constant, making those grains grow into refined columnar structures. Under the action of pulsed ultrasound, the yield strength was enhanced by a factor of 1.5 because of grain refinement strengthening, together with 94 pct shape recovery rate due to columnar grain structures.

Abstract Image

超声诱导定向凝固三元铜-铝-镍合金的微结构转变并改善其力学性能
在 Cu68.3Al27.6Ni4.1 合金的定向凝固过程中引入了两种超声模式,即连续超声和脉冲超声。在连续超声场中,主β(Cu3Al)相发生了柱状到方形结构的转变,同时晶粒尺寸缩小了 7.5 倍。在脉冲超声下,β 相保持细柱状结构,晶粒大小相似。在前一种情况下,由于瞬态空化引起的大量局部过冷,在固/液(S/L)界面前形成了大量的 β 相成核点。同时,密集的声流将液体温度梯度从 120 K/cm 抑制到 85 K/cm,从而中断了溶质沿热流方向的迁移,形成了等轴微结构。在后一种情况下,在间歇性超声波作用下,S/L 接口附近产生的成核点较少,但在稳定的空化作用下,小的柱状 β 晶粒从原来的晶粒中分裂出来。由于没有驱动稳定的对流,110 K/cm 的液体温度梯度几乎保持不变,使得这些晶粒成长为精致的柱状结构。在脉冲超声的作用下,由于晶粒细化强化,屈服强度提高了 1.5 倍,同时由于柱状晶粒结构,形状恢复率达到 94%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信