{"title":"All Teichmuller spaces are not starlike","authors":"Samuel L. Krushkal","doi":"arxiv-2407.18239","DOIUrl":null,"url":null,"abstract":"This paper is the final step in solving the problem of starlikeness of\nTeichmuller spaces in Bers' embedding. This step concerns the case of finite\ndimensional Teichmuller spaces ${\\mathbf T}(g, n)$ of positive dimension\n(corresponding to punctured Riemann surfaces of finite conformal type $(g, n)$\nwith $2g - 2 + n > 0$).","PeriodicalId":501142,"journal":{"name":"arXiv - MATH - Complex Variables","volume":"67 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Complex Variables","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.18239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper is the final step in solving the problem of starlikeness of
Teichmuller spaces in Bers' embedding. This step concerns the case of finite
dimensional Teichmuller spaces ${\mathbf T}(g, n)$ of positive dimension
(corresponding to punctured Riemann surfaces of finite conformal type $(g, n)$
with $2g - 2 + n > 0$).