Vibration control and transmission mechanism of super high-rise building located on subway based on spring vibration isolation system

IF 2.1 4区 工程技术 Q2 CONSTRUCTION & BUILDING TECHNOLOGY
Can Mei, Dayang Wang, Yongshan Zhang
{"title":"Vibration control and transmission mechanism of super high-rise building located on subway based on spring vibration isolation system","authors":"Can Mei, Dayang Wang, Yongshan Zhang","doi":"10.1177/13694332241266540","DOIUrl":null,"url":null,"abstract":"This study focuses on the vibration control effect of the spring vibration isolation system (SVIS) on a super high-rise building located on the subway (BLS) and the transmission mechanism of vibration in super high-rise BLS. Firstly, the 1:35 scale shaking table test model of super high-rise BLS is designed, the rationality of the shaking table test model is verified, and the shaking table test is implemented. Secondly, the finite element model (FEM) is established and verified based on the results of the shaking table test. Finally, based on verified FEM, the vibration control effect of SVIS on super high-rise BLS and the vibration transmission mechanism of super high-rise BLS is analyzed. The results show that the vibration response of the BLS show amplification trend along the height direction. The amplification of vibration response of BLS is effectively controlled by SVIS. The higher the floor, the greater the reduction coefficient, and the better the control effect. The reduction coefficient above 10F is mainly distributed above 0.80 due to the SVIS. The BLS equipped with the SVIS maintains the degree of Z-direction vibration and 1/3 octave vibration acceleration level that is within the limits stipulated by the specifications. The first-order vertical frequency of BLS equipped with the SVIS is adjusted from 65 Hz to 8 Hz, far from the favorable frequency range of the subway wave.","PeriodicalId":50849,"journal":{"name":"Advances in Structural Engineering","volume":"68 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Structural Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/13694332241266540","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study focuses on the vibration control effect of the spring vibration isolation system (SVIS) on a super high-rise building located on the subway (BLS) and the transmission mechanism of vibration in super high-rise BLS. Firstly, the 1:35 scale shaking table test model of super high-rise BLS is designed, the rationality of the shaking table test model is verified, and the shaking table test is implemented. Secondly, the finite element model (FEM) is established and verified based on the results of the shaking table test. Finally, based on verified FEM, the vibration control effect of SVIS on super high-rise BLS and the vibration transmission mechanism of super high-rise BLS is analyzed. The results show that the vibration response of the BLS show amplification trend along the height direction. The amplification of vibration response of BLS is effectively controlled by SVIS. The higher the floor, the greater the reduction coefficient, and the better the control effect. The reduction coefficient above 10F is mainly distributed above 0.80 due to the SVIS. The BLS equipped with the SVIS maintains the degree of Z-direction vibration and 1/3 octave vibration acceleration level that is within the limits stipulated by the specifications. The first-order vertical frequency of BLS equipped with the SVIS is adjusted from 65 Hz to 8 Hz, far from the favorable frequency range of the subway wave.
基于弹簧隔振系统的地铁超高层建筑振动控制与传导机制
本研究的重点是位于地铁上的超高层建筑(BLS)的弹簧隔振系统(SVIS)的振动控制效果以及超高层 BLS 的振动传递机理。首先,设计了超高层 BLS 的 1:35 比例振动台试验模型,验证了振动台试验模型的合理性,并实施了振动台试验。其次,根据振动台试验结果建立并验证有限元模型(FEM)。最后,基于验证的有限元模型,分析了 SVIS 对超高层 BLS 的振动控制效果以及超高层 BLS 的振动传递机理。结果表明,BLS 的振动响应沿高度方向呈放大趋势。SVIS 可以有效控制 BLS 振动响应的放大。楼层越高,降低系数越大,控制效果越好。由于 SVIS 的作用,10F 以上的降低系数主要分布在 0.80 以上。装有 SVIS 的 BLS 的 Z 向振动度和 1/3 倍频程振动加速度水平保持在规范规定的范围内。配备 SVIS 的 BLS 的一阶垂直频率从 65 Hz 调整到 8 Hz,远离地铁波的有利频率范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Structural Engineering
Advances in Structural Engineering 工程技术-工程:土木
CiteScore
5.00
自引率
11.50%
发文量
230
审稿时长
2.3 months
期刊介绍: Advances in Structural Engineering was established in 1997 and has become one of the major peer-reviewed journals in the field of structural engineering. To better fulfil the mission of the journal, we have recently decided to launch two new features for the journal: (a) invited review papers providing an in-depth exposition of a topic of significant current interest; (b) short papers reporting truly new technologies in structural engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信