{"title":"Vibration control and transmission mechanism of super high-rise building located on subway based on spring vibration isolation system","authors":"Can Mei, Dayang Wang, Yongshan Zhang","doi":"10.1177/13694332241266540","DOIUrl":null,"url":null,"abstract":"This study focuses on the vibration control effect of the spring vibration isolation system (SVIS) on a super high-rise building located on the subway (BLS) and the transmission mechanism of vibration in super high-rise BLS. Firstly, the 1:35 scale shaking table test model of super high-rise BLS is designed, the rationality of the shaking table test model is verified, and the shaking table test is implemented. Secondly, the finite element model (FEM) is established and verified based on the results of the shaking table test. Finally, based on verified FEM, the vibration control effect of SVIS on super high-rise BLS and the vibration transmission mechanism of super high-rise BLS is analyzed. The results show that the vibration response of the BLS show amplification trend along the height direction. The amplification of vibration response of BLS is effectively controlled by SVIS. The higher the floor, the greater the reduction coefficient, and the better the control effect. The reduction coefficient above 10F is mainly distributed above 0.80 due to the SVIS. The BLS equipped with the SVIS maintains the degree of Z-direction vibration and 1/3 octave vibration acceleration level that is within the limits stipulated by the specifications. The first-order vertical frequency of BLS equipped with the SVIS is adjusted from 65 Hz to 8 Hz, far from the favorable frequency range of the subway wave.","PeriodicalId":50849,"journal":{"name":"Advances in Structural Engineering","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Structural Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/13694332241266540","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study focuses on the vibration control effect of the spring vibration isolation system (SVIS) on a super high-rise building located on the subway (BLS) and the transmission mechanism of vibration in super high-rise BLS. Firstly, the 1:35 scale shaking table test model of super high-rise BLS is designed, the rationality of the shaking table test model is verified, and the shaking table test is implemented. Secondly, the finite element model (FEM) is established and verified based on the results of the shaking table test. Finally, based on verified FEM, the vibration control effect of SVIS on super high-rise BLS and the vibration transmission mechanism of super high-rise BLS is analyzed. The results show that the vibration response of the BLS show amplification trend along the height direction. The amplification of vibration response of BLS is effectively controlled by SVIS. The higher the floor, the greater the reduction coefficient, and the better the control effect. The reduction coefficient above 10F is mainly distributed above 0.80 due to the SVIS. The BLS equipped with the SVIS maintains the degree of Z-direction vibration and 1/3 octave vibration acceleration level that is within the limits stipulated by the specifications. The first-order vertical frequency of BLS equipped with the SVIS is adjusted from 65 Hz to 8 Hz, far from the favorable frequency range of the subway wave.
期刊介绍:
Advances in Structural Engineering was established in 1997 and has become one of the major peer-reviewed journals in the field of structural engineering. To better fulfil the mission of the journal, we have recently decided to launch two new features for the journal: (a) invited review papers providing an in-depth exposition of a topic of significant current interest; (b) short papers reporting truly new technologies in structural engineering.