O. A. Bulavchenko, T. N. Afonasenko, V. P. Konovalova, V. A. Rogov, E. Yu. Gerasimov, E. E. Aidakov, Z. S. Vinokurov
{"title":"Effect of the Calcination Temperature on the Properties of MnOx–CuO–ZrO2–CeO2 Catalysts for CO Oxidation","authors":"O. A. Bulavchenko, T. N. Afonasenko, V. P. Konovalova, V. A. Rogov, E. Yu. Gerasimov, E. E. Aidakov, Z. S. Vinokurov","doi":"10.1134/S0022476624070084","DOIUrl":null,"url":null,"abstract":"<p>Four-component oxide catalysts MnO<sub><i>x</i></sub>–CuO–ZrO<sub>2</sub>–CeO<sub>2</sub> are synthesized by co-precipitation with varying the calcination temperature from 400 °C to 800 °C. Formation and decomposition processes in mixed oxides are studied by X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy. The <i>redox</i> properties of the obtained samples are tested by temperature-programmed hydrogen reduction, and the catalytic characteristics are examined in the CO oxidation reaction. At 400-600 °C homogeneous solid solution Mn<sub><i>x</i></sub>Cu<sub><i>y</i></sub>Zr<sub><i>z</i></sub>Ce<sub><i>q</i></sub>O<sub>2</sub> with the fluorite structure is formed. Temperature elevation to 700-800 °C facilitates the gradual decomposition of initial oxide, with manganese and copper cations leaving its composition in the form of highly dispersed CuO and Cu<sub><i>x</i></sub>Mn<sub>3–<i>x</i></sub>O<sub>4</sub> particles. The occurrence of different active states in the catalyst and their transitions into each other under the temperature effect is shown to maintain the high activity in the CO oxidation reaction up to 800 °C.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S0022476624070084","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Four-component oxide catalysts MnOx–CuO–ZrO2–CeO2 are synthesized by co-precipitation with varying the calcination temperature from 400 °C to 800 °C. Formation and decomposition processes in mixed oxides are studied by X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy. The redox properties of the obtained samples are tested by temperature-programmed hydrogen reduction, and the catalytic characteristics are examined in the CO oxidation reaction. At 400-600 °C homogeneous solid solution MnxCuyZrzCeqO2 with the fluorite structure is formed. Temperature elevation to 700-800 °C facilitates the gradual decomposition of initial oxide, with manganese and copper cations leaving its composition in the form of highly dispersed CuO and CuxMn3–xO4 particles. The occurrence of different active states in the catalyst and their transitions into each other under the temperature effect is shown to maintain the high activity in the CO oxidation reaction up to 800 °C.
摘要 通过共沉淀法合成了 MnOx-CuO-ZrO2-CeO2 四组分氧化物催化剂。通过 X 射线衍射、透射电子显微镜和 X 射线光电子能谱研究了混合氧化物的形成和分解过程。通过温度编程氢还原测试了所得样品的氧化还原特性,并考察了 CO 氧化反应的催化特性。在 400-600 °C 温度下,形成了具有萤石结构的均匀固溶体 MnxCuyZrzCeqO2。温度升高到 700-800 ℃时,初始氧化物逐渐分解,锰和铜阳离子以高度分散的 CuO 和 CuxMn3-xO4 颗粒的形式离开其成分。催化剂中不同活性态的出现以及它们在温度作用下的相互转化表明,催化剂在 CO 氧化反应中的高活性可以维持到 800 ℃。
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.