Cunyang Wei;Haipeng Jia;Yunquan Zhang;Jianyu Yao;Chendi Li;Wenxuan Cao
{"title":"IrGEMM: An Input-Aware Tuning Framework for Irregular GEMM on ARM and X86 CPUs","authors":"Cunyang Wei;Haipeng Jia;Yunquan Zhang;Jianyu Yao;Chendi Li;Wenxuan Cao","doi":"10.1109/TPDS.2024.3432579","DOIUrl":null,"url":null,"abstract":"The matrix multiplication algorithm is a fundamental numerical technique in linear algebra and plays a crucial role in many scientific computing applications. Despite the high performance of mainstream basic linear algebra libraries for large-scale dense matrix multiplications, they exhibit poor performance when applied to matrix multiplication with irregular input. This paper proposes an input-aware tuning framework that accounts for application scenarios and computer architectures to provide high-performance irregular matrix multiplication on ARMv8 and X86 CPUs. The framework comprises two stages: the install-time stage and the run-time stage. The install-time stage utilizes our proposed computational template to generate high-performance kernels for general data layout and SIMD-friendly data layout. The run-time stage utilizes a tiling algorithm suitable for irregular GEMM to select the optimal kernel and link as an execution plan. Additionally, load-balanced multi-threaded optimization algorithms are defined to exploit the multi-threading capability of modern processors. Experiments demonstrate that the proposed IrGEMM framework can achieve significant performance improvements for irregular GEMM on both ARMv8 and X86 CPUs compared to other mainstream BLAS libraries.","PeriodicalId":13257,"journal":{"name":"IEEE Transactions on Parallel and Distributed Systems","volume":"35 9","pages":"1672-1689"},"PeriodicalIF":5.6000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Parallel and Distributed Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10607886/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The matrix multiplication algorithm is a fundamental numerical technique in linear algebra and plays a crucial role in many scientific computing applications. Despite the high performance of mainstream basic linear algebra libraries for large-scale dense matrix multiplications, they exhibit poor performance when applied to matrix multiplication with irregular input. This paper proposes an input-aware tuning framework that accounts for application scenarios and computer architectures to provide high-performance irregular matrix multiplication on ARMv8 and X86 CPUs. The framework comprises two stages: the install-time stage and the run-time stage. The install-time stage utilizes our proposed computational template to generate high-performance kernels for general data layout and SIMD-friendly data layout. The run-time stage utilizes a tiling algorithm suitable for irregular GEMM to select the optimal kernel and link as an execution plan. Additionally, load-balanced multi-threaded optimization algorithms are defined to exploit the multi-threading capability of modern processors. Experiments demonstrate that the proposed IrGEMM framework can achieve significant performance improvements for irregular GEMM on both ARMv8 and X86 CPUs compared to other mainstream BLAS libraries.
期刊介绍:
IEEE Transactions on Parallel and Distributed Systems (TPDS) is published monthly. It publishes a range of papers, comments on previously published papers, and survey articles that deal with the parallel and distributed systems research areas of current importance to our readers. Particular areas of interest include, but are not limited to:
a) Parallel and distributed algorithms, focusing on topics such as: models of computation; numerical, combinatorial, and data-intensive parallel algorithms, scalability of algorithms and data structures for parallel and distributed systems, communication and synchronization protocols, network algorithms, scheduling, and load balancing.
b) Applications of parallel and distributed computing, including computational and data-enabled science and engineering, big data applications, parallel crowd sourcing, large-scale social network analysis, management of big data, cloud and grid computing, scientific and biomedical applications, mobile computing, and cyber-physical systems.
c) Parallel and distributed architectures, including architectures for instruction-level and thread-level parallelism; design, analysis, implementation, fault resilience and performance measurements of multiple-processor systems; multicore processors, heterogeneous many-core systems; petascale and exascale systems designs; novel big data architectures; special purpose architectures, including graphics processors, signal processors, network processors, media accelerators, and other special purpose processors and accelerators; impact of technology on architecture; network and interconnect architectures; parallel I/O and storage systems; architecture of the memory hierarchy; power-efficient and green computing architectures; dependable architectures; and performance modeling and evaluation.
d) Parallel and distributed software, including parallel and multicore programming languages and compilers, runtime systems, operating systems, Internet computing and web services, resource management including green computing, middleware for grids, clouds, and data centers, libraries, performance modeling and evaluation, parallel programming paradigms, and programming environments and tools.