Long-Range MD Electrostatics Force Computation on FPGAs

IF 5.6 2区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS
Sahan Bandara;Anthony Ducimo;Chunshu Wu;Martin Herbordt
{"title":"Long-Range MD Electrostatics Force Computation on FPGAs","authors":"Sahan Bandara;Anthony Ducimo;Chunshu Wu;Martin Herbordt","doi":"10.1109/TPDS.2024.3434347","DOIUrl":null,"url":null,"abstract":"Strong scaling of long-range electrostatic force computation, which is a central concern of long timescale molecular dynamics simulations, is challenging for CPUs and GPUs due to its complex communication structure and global communication requirements. The scalability challenge is seen especially in small simulations of tens to hundreds of thousands of atoms that are of interest to many important applications such as physics-driven drug discovery. FPGA clusters, with their direct, tightly coupled, low-latency interconnects, are able to address these requirements. For FPGA MD clusters to be effective, however, single device performance must also be competitive. In this work, we leverage the inherent benefits of FPGAs to implement a long-range electrostatic force computation architecture. We present an overall framework with numerous algorithmic, mapping, and architecture innovations, including a unified interleaved memory, a spatial scheduling algorithm, and a design for seamless integration with the larger MD system. We examine a number of alternative configurations based on different resource allocation strategies and user parameters. We show that the best configuration of this architecture, implemented on an Intel Agilex FPGA, can achieve \n<inline-formula><tex-math>$2124 ns$</tex-math></inline-formula>\n and \n<inline-formula><tex-math>$287 ns$</tex-math></inline-formula>\n of simulated time per day of wall-clock time for the two molecular dynamics benchmarks DHFR and ApoA1; simulating 23K and 92K particles, respectively.","PeriodicalId":13257,"journal":{"name":"IEEE Transactions on Parallel and Distributed Systems","volume":"35 10","pages":"1690-1707"},"PeriodicalIF":5.6000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Parallel and Distributed Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10612253/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Strong scaling of long-range electrostatic force computation, which is a central concern of long timescale molecular dynamics simulations, is challenging for CPUs and GPUs due to its complex communication structure and global communication requirements. The scalability challenge is seen especially in small simulations of tens to hundreds of thousands of atoms that are of interest to many important applications such as physics-driven drug discovery. FPGA clusters, with their direct, tightly coupled, low-latency interconnects, are able to address these requirements. For FPGA MD clusters to be effective, however, single device performance must also be competitive. In this work, we leverage the inherent benefits of FPGAs to implement a long-range electrostatic force computation architecture. We present an overall framework with numerous algorithmic, mapping, and architecture innovations, including a unified interleaved memory, a spatial scheduling algorithm, and a design for seamless integration with the larger MD system. We examine a number of alternative configurations based on different resource allocation strategies and user parameters. We show that the best configuration of this architecture, implemented on an Intel Agilex FPGA, can achieve $2124 ns$ and $287 ns$ of simulated time per day of wall-clock time for the two molecular dynamics benchmarks DHFR and ApoA1; simulating 23K and 92K particles, respectively.
FPGA 上的长程 MD 静电力计算
长程静电力计算的强扩展性是长时间尺度分子动力学模拟的核心问题,由于其复杂的通信结构和全局通信要求,对 CPU 和 GPU 来说具有挑战性。尤其是在数万到数十万个原子的小型模拟中,这种可扩展性挑战尤为突出,而这正是物理驱动药物发现等许多重要应用所关注的。FPGA 群集具有直接、紧密耦合、低延迟的互连功能,能够满足这些要求。然而,要使 FPGA MD 群集有效,单个设备的性能也必须具有竞争力。在这项工作中,我们利用 FPGA 的固有优势实现了长程静电力计算架构。我们提出了一个具有众多算法、映射和架构创新的整体框架,包括统一交错存储器、空间调度算法以及与大型 MD 系统无缝集成的设计。我们根据不同的资源分配策略和用户参数,研究了多种可选配置。我们的研究表明,在英特尔 Agilex FPGA 上实现的这一架构的最佳配置,可以在两个分子动力学基准 DHFR 和 ApoA1 上分别模拟 23K 和 92K 个粒子,每天壁钟时间的模拟时间分别达到 2124 ns$ 和 287 ns$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Parallel and Distributed Systems
IEEE Transactions on Parallel and Distributed Systems 工程技术-工程:电子与电气
CiteScore
11.00
自引率
9.40%
发文量
281
审稿时长
5.6 months
期刊介绍: IEEE Transactions on Parallel and Distributed Systems (TPDS) is published monthly. It publishes a range of papers, comments on previously published papers, and survey articles that deal with the parallel and distributed systems research areas of current importance to our readers. Particular areas of interest include, but are not limited to: a) Parallel and distributed algorithms, focusing on topics such as: models of computation; numerical, combinatorial, and data-intensive parallel algorithms, scalability of algorithms and data structures for parallel and distributed systems, communication and synchronization protocols, network algorithms, scheduling, and load balancing. b) Applications of parallel and distributed computing, including computational and data-enabled science and engineering, big data applications, parallel crowd sourcing, large-scale social network analysis, management of big data, cloud and grid computing, scientific and biomedical applications, mobile computing, and cyber-physical systems. c) Parallel and distributed architectures, including architectures for instruction-level and thread-level parallelism; design, analysis, implementation, fault resilience and performance measurements of multiple-processor systems; multicore processors, heterogeneous many-core systems; petascale and exascale systems designs; novel big data architectures; special purpose architectures, including graphics processors, signal processors, network processors, media accelerators, and other special purpose processors and accelerators; impact of technology on architecture; network and interconnect architectures; parallel I/O and storage systems; architecture of the memory hierarchy; power-efficient and green computing architectures; dependable architectures; and performance modeling and evaluation. d) Parallel and distributed software, including parallel and multicore programming languages and compilers, runtime systems, operating systems, Internet computing and web services, resource management including green computing, middleware for grids, clouds, and data centers, libraries, performance modeling and evaluation, parallel programming paradigms, and programming environments and tools.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信