Remoteness in the category of bilocales

Mbekezeli Nxumalo
{"title":"Remoteness in the category of bilocales","authors":"Mbekezeli Nxumalo","doi":"arxiv-2407.14755","DOIUrl":null,"url":null,"abstract":"In locale theory, a sublocale is said to be remote in case it misses every\nnowhere dense sublocale. In this paper, we introduce and study a new class of\nsublocales in the category of bilocales, namely (i,j)-remote sublocales. These\nare bilocalic counterparts of remote sublocales and are the sublocales missing\nevery (i,j)-nowhere dense sublocale, with (i,j)-nowhere dense sublocales being\nbilocalic counterparts of (\\tau_{i},\\tau_{j})-nowhere dense subsets in\nbitopological spaces. A comprehensive study of (i,j)-nowhere dense sublocales\nis given and we show that in the class of balanced bilocales, a sublocale is\n(i,j)-nowhere dense if and only if its bilocale closure is nowhere dense. We\nalso consider weakly (i,j)-remote sublocales which are those sublocales missing\nevery clopen (i,j)-nowhere dense sublocale. Furthermore, we extend\n(i,j)-remoteness to the categories of bitopological spaces as well as normed\nlattices. In the class of \\sup-T_{D} bitopological spaces, a subset A of a\nbitopological space (X,\\tau_{1},\\tau_{2}) is (\\tau_{i},\\tau_{j})-remote if and\nonly if the induced sublocale \\widetilde{A} of \\tau_{1}\\vee\\tau_{2} is\n(i,j)-remote.","PeriodicalId":501314,"journal":{"name":"arXiv - MATH - General Topology","volume":"55 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - General Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.14755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In locale theory, a sublocale is said to be remote in case it misses every nowhere dense sublocale. In this paper, we introduce and study a new class of sublocales in the category of bilocales, namely (i,j)-remote sublocales. These are bilocalic counterparts of remote sublocales and are the sublocales missing every (i,j)-nowhere dense sublocale, with (i,j)-nowhere dense sublocales being bilocalic counterparts of (\tau_{i},\tau_{j})-nowhere dense subsets in bitopological spaces. A comprehensive study of (i,j)-nowhere dense sublocales is given and we show that in the class of balanced bilocales, a sublocale is (i,j)-nowhere dense if and only if its bilocale closure is nowhere dense. We also consider weakly (i,j)-remote sublocales which are those sublocales missing every clopen (i,j)-nowhere dense sublocale. Furthermore, we extend (i,j)-remoteness to the categories of bitopological spaces as well as normed lattices. In the class of \sup-T_{D} bitopological spaces, a subset A of a bitopological space (X,\tau_{1},\tau_{2}) is (\tau_{i},\tau_{j})-remote if and only if the induced sublocale \widetilde{A} of \tau_{1}\vee\tau_{2} is (i,j)-remote.
二元对立范畴中的远程性
在位置理论中,如果一个子位置错失了任何地方的稠密子位置,那么这个子位置就被称为偏远子位置。在本文中,我们引入并研究了双元子范畴中的一类新子范畴,即 (i,j)- 远程子范畴。它们是远程子团的双局域对应物,是每一个(i,j)-无局致密子团缺失的子团,其中(i,j)-无局致密子团是比特拓扑空间中(\tau_{i},\tau_{j})-无局致密子集的双局域对应物。我们给出了对(i,j)-nowhere致密子域的全面研究,并证明了在平衡双域类中,当且仅当一个子域的双域闭包是无处致密的时候,这个子域才是(i,j)-nowhere致密的。我们还考虑了弱(i,j)-无处致密子团,它们是那些缺少每个闭合(i,j)-无处致密子团的子团。此外,我们还把(i,j)无关性扩展到位拓扑空间以及规范格的范畴。在位论空间(\sup-T_{D})类中,当且仅当 \tau_{1}\vee\tau_{2} 的诱导子域 \widetilde{A} 是(i,j)-远程的时候,位论空间(X,\tau_{1},\tau_{2})的子集 A 才是(\tau_{i},\tau_{j})-远程的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信