On stratifications and poset-stratified spaces

Lukas Waas, Jon Woolf, Shoji Yokura
{"title":"On stratifications and poset-stratified spaces","authors":"Lukas Waas, Jon Woolf, Shoji Yokura","doi":"arxiv-2407.17690","DOIUrl":null,"url":null,"abstract":"A stratified space is a topological space equipped with a\n\\emph{stratification}, which is a decomposition or partition of the topological\nspace satisfying certain extra conditions. More recently, the notion of\nposet-stratified space, i.e., topological space endowed with a continuous map\nto a poset with its Alexandrov topology, has been popularized. Both notions of\nstratified spaces are ubiquitous in mathematics, ranging from investigations of\nsingular structures in algebraic geometry to extensions of the homotopy\nhypothesis in higher category theory. In this article we study the precise\nmathematical relation between these different approaches to stratified spaces.","PeriodicalId":501314,"journal":{"name":"arXiv - MATH - General Topology","volume":"162 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - General Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.17690","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A stratified space is a topological space equipped with a \emph{stratification}, which is a decomposition or partition of the topological space satisfying certain extra conditions. More recently, the notion of poset-stratified space, i.e., topological space endowed with a continuous map to a poset with its Alexandrov topology, has been popularized. Both notions of stratified spaces are ubiquitous in mathematics, ranging from investigations of singular structures in algebraic geometry to extensions of the homotopy hypothesis in higher category theory. In this article we study the precise mathematical relation between these different approaches to stratified spaces.
论分层和正方体分层空间
分层空间是一个拓扑空间,它具有一个分层映射,是拓扑空间满足某些额外条件的分解或分割。最近,"poset-stratified space "的概念得到了推广,即拓扑空间被赋予了一个连续的映射到一个具有亚历山德罗夫拓扑的poset。这两个分层空间概念在数学中无处不在,从代数几何中对星状结构的研究到高范畴理论中对同调假说的扩展,不一而足。在本文中,我们将研究这些不同的分层空间方法之间的精确数学关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信